Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 18
  • Item
    Online Probabilistic Topological Mapping
    (Georgia Institute of Technology, 2011-01-24) Ranganathan, Ananth ; Dellaert, Frank
    We present a novel algorithm for topological mapping, which is the problem of finding the graph structure of an environment from a sequence of measurements. Our algorithm, called Online Probabilistic Topological Mapping (OPTM), systematically addresses the problem by constructing the posterior on the space of all possible topologies given measurements. With each successive measurement, the posterior is updated incrementally using a Rao–Blackwellized particle filter. We present efficient sampling mechanisms using data-driven proposals and prior distributions on topologies that further enable OPTM’s operation in an online manner. OPTM can incorporate various sensors seamlessly, as is demonstrated by our use of appearance, laser, and odometry measurements. OPTM is the first topological mapping algorithm that is theoretically accurate, systematic, sensor independent, and online, and thus advances the state of the art significantly. We evaluate the algorithm on a robot in diverse environments.
  • Item
    Bayesian Surprise and Landmark Detection
    (Georgia Institute of Technology, 2009-05) Ranganathan, Ananth ; Dellaert, Frank
    Automatic detection of landmarks, usually special places in the environment such as gateways, for topological mapping has proven to be a difficult task. We present the use of Bayesian surprise, introduced in computer vision, for landmark detection. Further, we provide a novel hierarchical, graphical model for the appearance of a place and use this model to perform surprise-based landmark detection. Our scheme is agnostic to the sensor type, and we demonstrate this by implementing a simple laser model for computing surprise. We evaluate our landmark detector using appearance and laser measurements in the context of a topological mapping algorithm, thus demonstrating the practical applicability of the detector.
  • Item
    Place Recognition-Based Fixed-Lag Smoothing for Environments with Unreliable GPS
    (Georgia Institute of Technology, 2008-05) Mottaghi, Roozbeh ; Kaess, Michael ; Ranganathan, Ananth ; Roberts, Richard ; Dellaert, Frank
    Pose estimation of outdoor robots presents some distinct challenges due to the various uncertainties in the robot sensing and action. In particular, global positioning sensors of outdoor robots do not always work perfectly, causing large drift in the location estimate of the robot. To overcome this common problem, we propose a new approach for global localization using place recognition. First, we learn the location of some arbitrary key places using odometry measurements and GPS measurements only at the start and the end of the robot trajectory. In subsequent runs, when the robot perceives a key place, our fixed-lag smoother fuses odometry measurements with the relative location to the key place to improve its pose estimate. Outdoor mobile robot experiments show that place recognition measurements significantly improve the estimate of the smoother in the absence of GPS measurements.
  • Item
    iSAM: Incremental Smoothing and Mapping
    (Georgia Institute of Technology, 2008) Kaess, Michael ; Ranganathan, Ananth ; Dellaert, Frank
    We present incremental smoothing and mapping (iSAM), a novel approach to the simultaneous localization and mapping problem that is based on fast incremental matrix factorization. iSAM provides an efficient and exact solution by updating a QR factorization of the naturally sparse smoothing information matrix, therefore recalculating only the matrix entries that actually change. iSAM is efficient even for robot trajectories with many loops as it avoids unnecessary fill-in in the factor matrix by periodic variable reordering. Also, to enable data association in real-time, we provide efficient algorithms to access the estimation uncertainties of interest based on the factored information matrix. We systematically evaluate the different components of iSAM as well as the overall algorithm using various simulated and real-world datasets for both landmark and pose-only settings.
  • Item
    Automatic Landmark Detection for Topological Mapping Using Bayesian Surprise
    (Georgia Institute of Technology, 2008) Ranganathan, Ananth ; Dellaert, Frank
    Topological maps are graphical representations of the environment consisting of nodes that denote landmarks, and edges that represent the connectivity between the landmarks. Automatic detection of landmarks, usually special places in the environment such as gateways, in a general, sensor-independent manner has proven to be a difficult task. We present a landmark detection scheme based on the notion of “surprise” that addresses these issues. The surprise associated with a measurement is defined as the change in the current model upon updating it using the measurement. We demonstrate that surprise is large when sudden changes in the environment occur, and hence, is a good indicator of landmarks. We evaluate our landmark detector using appearance and laser measurements both qualitatively and quantitatively. Part of this evaluation is performed in the context of a topological mapping algorithm, thus demonstrating the practical applicability of the detector.
  • Item
    Fast 3D Pose Estimation With Out-of-Sequence Measurements
    (Georgia Institute of Technology, 2007-10) Ranganathan, Ananth ; Kaess, Michael ; Dellaert, Frank
    We present an algorithm for pose estimation using fixed-lag smoothing. We show that fixed-lag smoothing enables inclusion of measurements from multiple asynchronous measurement sources in an optimal manner. Since robots usually have a plurality of uncoordinated sensors, our algorithm has an advantage over filtering-based estimation algorithms, which cannot incorporate delayed measurements optimally. We provide an implementation of the general fixed-lag smoothing algorithm using square root smoothing, a technique that has recently become prominent. Square root smoothing uses fast sparse matrix factorization and enables our fixed-lag pose estimation algorithm to run at upwards of 20 Hz. Our algorithm has been extensively tested over hundreds of hours of operation on a robot operating in outdoor environments. We present results based on these tests that verify our claims using wheel encoders, visual odometry, and GPS as sensors.
  • Item
    Semantic Modeling of Places using Objects
    (Georgia Institute of Technology, 2007-06) Ranganathan, Ananth ; Dellaert, Frank
    While robot mapping has seen massive strides recently, higher level abstractions in map representation are still not widespread. Maps containing semantic concepts such as objects and labels are essential for many tasks in manmade environments as well as for human-robot interaction and map communication. In keeping with this aim, we present a model for places using objects as the basic unit of representation. Our model is a 3D extension of the constellation object model, popular in computer vision, in which the objects are modeled by their appearance and shape. The 3D location of each object is maintained in a coordinate frame local to the place. The individual object models are learned in a supervised manner using roughly segmented and labeled training images. Stereo range data is used to compute 3D locations of the objects. We use the Swendsen-Wang algorithm, a cluster MCMC method, to solve the correspondence problem between image features and objects during inference. We provide a technique for building panoramic place models from multiple views of a location. An algorithm for place recognition by comparing models is also provided. Results are presented in the form of place models inferred in an indoor environment.We envision the use of our place model as a building block towards a complete object-based semantic mapping system.
  • Item
    iSAM: Fast Incremental Smoothing and Mapping with Efficient Data Association
    (Georgia Institute of Technology, 2007-04) Kaess, Michael ; Ranganathan, Ananth ; Dellaert, Frank
    We introduce incremental smoothing and mapping (iSAM), a novel approach to the problem of simultaneous localization and mapping (SLAM) that addresses the data association problem and allows real-time application in large-scale environments. We employ smoothing to obtain the complete trajectory and map without the need for any approximations, exploiting the natural sparsity of the smoothing information matrix. A QR-factorization of this information matrix is at the heart of our approach. It provides efficient access to the exact covariances as well as to conservative estimates that are used for online data association. It also allows recovery of the exact trajectory and map at any given time by backsubstitution. Instead of refactoring in each step, we update the QR-factorization whenever a new measurement arrives. We analyze the effect of loops, and show how our approach extends to the non-linear case. Finally, we provide experimental validation of the overall non-linear algorithm based on the standard Victoria Park data set with unknown correspondences.
  • Item
    Fast Incremental Square Root Information Smoothing
    (Georgia Institute of Technology, 2007-01) Kaess, Michael ; Ranganathan, Ananth ; Dellaert, Frank
    We propose a novel approach to the problem of simultaneous localization and mapping (SLAM) based on incremental smoothing, that is suitable for real-time applications in large-scale environments. The main advantages over filter-based algorithms are that we solve the full SLAM problem without the need for any approximations, and that we do not suffer from linearization errors. We achieve efficiency by updating the square-root information matrix, a factored version of the naturally sparse smoothing information matrix. We can efficiently recover the exact trajectory and map at any given time by back-substitution. Furthermore, our approach allows access to the exact covariances, as it does not suffer from under-estimation of uncertainties, which is another problem inherent to filters. We present simulation-based results for the linear case, showing constant time updates for exploration tasks. We further evaluate the behavior in the presence of loops, and discuss how our approach extends to the non-linear case. Finally, we evaluate the overall non-linear algorithm on the standard Victoria Park data set.
  • Item
    Probabilistic Topological Mapping for Mobile Robots using Urn Models
    (Georgia Institute of Technology, 2007) Ranganathan, Ananth ; Dellaert, Frank
    We present an application of Bayesian modeling and inference to topological mapping in robotics. This is a potentially difficult problem due to (a) the combinatorial nature of the state space, and (b) perceptual aliasing by which two different landmarks in the environment can appear similar to the robot's sensors. Hence, this presents a challenging approximate inference problem, complicated by the fact that the form of the prior on topologies is far from obvious. We deal with the latter problem by introducing the use of urn models, which very naturally encode prior assumptions in the domain of topological mapping. Secondly, we advance simulated tempering as the basis of two rapidly mixing approximate inference algorithms, based on Markov chain Monte Carlo (MCMC) and Sequential Importance Sampling (SIS), respectively. These algorithms converge quickly even though the posterior being estimated is highly peaked and multimodal. Experiments on real robots and in simulation demonstrate the efficiency and robustness of our technique.