Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Automatic Landmark Detection for Topological Mapping Using Bayesian Surprise
    (Georgia Institute of Technology, 2008) Ranganathan, Ananth ; Dellaert, Frank
    Topological maps are graphical representations of the environment consisting of nodes that denote landmarks, and edges that represent the connectivity between the landmarks. Automatic detection of landmarks, usually special places in the environment such as gateways, in a general, sensor-independent manner has proven to be a difficult task. We present a landmark detection scheme based on the notion of “surprise” that addresses these issues. The surprise associated with a measurement is defined as the change in the current model upon updating it using the measurement. We demonstrate that surprise is large when sudden changes in the environment occur, and hence, is a good indicator of landmarks. We evaluate our landmark detector using appearance and laser measurements both qualitatively and quantitatively. Part of this evaluation is performed in the context of a topological mapping algorithm, thus demonstrating the practical applicability of the detector.
  • Item
    Dirichlet Process based Bayesian Partition Models for Robot Topological Mapping
    (Georgia Institute of Technology, 2004) Ranganathan, Ananth ; Dellaert, Frank
    Robotic mapping involves finding a solution to the correspondence problem. A general purpose solution to this problem is as yet unavailable due to the combinatorial nature of the state space. We present a framework for computing the posterior distribution over the space of topological maps that solves the correspondence problem in the context of topological mapping. Since exact inference in this space is intractable, we present two sampling algorithms that compute sample-based representations of the posterior. Both the algorithms are built on a Bayesian product partition model that is derived from the mixture of Dirichlet processes model. Robot experiments demonstrate the applicability of the algorithms.