Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree
    (Georgia Institute of Technology, 2012-02) Kaess, Michael ; Johannsson, Hordur ; Roberts, Richard ; Ila, Viorela ; Leonard, John ; Dellaert, Frank
    We present a novel data structure, the Bayes tree, that provides an algorithmic foundation enabling a better understanding of existing graphical model inference algorithms and their connection to sparse matrix factorization methods. Similar to a clique tree, a Bayes tree encodes a factored probability density, but unlike the clique tree it is directed and maps more naturally to the square root information matrix of the simultaneous localization and mapping (SLAM) problem. In this paper, we highlight three insights provided by our new data structure. First, the Bayes tree provides a better understanding of the matrix factorization in terms of probability densities. Second, we show how the fairly abstract updates to a matrix factorization translate to a simple editing of the Bayes tree and its conditional densities. Third, we apply the Bayes tree to obtain a completely novel algorithm for sparse nonlinear incremental optimization, named iSAM2, which achieves improvements in efficiency through incremental variable re-ordering and fluid relinearization, eliminating the need for periodic batch steps. We analyze various properties of iSAM2 in detail, and show on a range of real and simulated datasets that our algorithm compares favorably with other recent mapping algorithms in both quality and efficiency.
  • Item
    iSAM2: Incremental Smoothing and Mapping with Fluid Relinearization and Incremental Variable Reordering
    (Georgia Institute of Technology, 2011) Kaess, Michael ; Johannsson, Hordur ; Roberts, Richard ; Ila, Viorela ; Leonard, John ; Dellaert, Frank
    We present iSAM2, a fully incremental, graphbased version of incremental smoothing and mapping (iSAM). iSAM2 is based on a novel graphical model-based interpretation of incremental sparse matrix factorization methods, afforded by the recently introduced Bayes tree data structure. The original iSAM algorithm incrementally maintains the square root information matrix by applying matrix factorization updates. We analyze the matrix updates as simple editing operations on the Bayes tree and the conditional densities represented by its cliques. Based on that insight, we present a new method to incrementally change the variable ordering which has a large effect on efficiency. The efficiency and accuracy of the new method is based on fluid relinearization, the concept of selectively relinearizing variables as needed. This allows us to obtain a fully incremental algorithm without any need for periodic batch steps. We analyze the properties of the resulting algorithm in detail, and show on various real and simulated datasets that the iSAM2 algorithm compares favorably with other recent mapping algorithms in both quality and efficiency.