Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 16
  • Item
    Distributed Real-time Cooperative Localization and Mapping Using an Uncertainty-Aware Expectation Maximization Approach
    (Georgia Institute of Technology, 2015-05) Dong, Jing ; Nelson, Erik ; Indelman, Vadim ; Michael, Nathan ; Dellaert, Frank
    We demonstrate distributed, online, and real-time cooperative localization and mapping between multiple robots operating throughout an unknown environment sing indirect measurements. We present a novel Expectation Maximization (EM) based approach to efficiently identify inlier multi-robot loop closures by incorporating robot pose uncertainty, which significantly improves the trajectory accuracy over long-term navigation. An EM and hypothesis based method is used to determine a common reference frame. We detail a 2D laser scan correspondence method to form robust correspondences between laser scans shared amongst robots. The implementation is experimentally validated using teams of aerial vehicles, and analyzed to determine its accuracy, computational efficiency, scalability to many robots, and robustness to varying environments. We demonstrate through multiple experiments that our method can efficiently build maps of large indoor and outdoor environments in a distributed, online, and real-time setting.
  • Item
    Information-based Reduced Landmark SLAM
    (Georgia Institute of Technology, 2015-05) Choudhary, Siddharth ; Indelman, Vadim ; Christensen, Henrik I. ; Dellaert, Frank
    In this paper, we present an information-based approach to select a reduced number of landmarks and poses for a robot to localize itself and simultaneously build an accurate map. We develop an information theoretic algorithm to efficiently reduce the number of landmarks and poses in a SLAM estimate without compromising the accuracy of the estimated trajectory. We also propose an incremental version of the reduction algorithm which can be used in SLAM framework resulting in information based reduced landmark SLAM. The results of reduced landmark based SLAM algorithm are shown on Victoria park dataset and a Synthetic dataset and are compared with standard graph SLAM (SAM [6]) algorithm. We demonstrate a reduction of 40-50% in the number of landmarks and around 55% in the number of poses with minimal estimation error as compared to standard SLAM algorithm.
  • Item
    Distributed Navigation with Unknown Initial Poses and Data Association via Expectation Maximization
    (Georgia Institute of Technology, 2015-02) Indelman, Vadim ; Michael, Nathan ; Dellaert, Frank
    We present a novel approach for multi-robot distributed and incremental inference over variables of interest, such as robot trajectories, considering the initial relative poses between the robots and multi-robot data association are both unknown. Assuming robots share with each other informative observations, this inference problem is formulated within an Expectation-Maximization (EM) optimization, performed by each robot separately, alternating between inference over variables of interest and multi-robot data association. To facilitate this process, a common reference frame between the robots should first be established. We show the latter is coupled with determining multi-robot data association, and therefore concurrently infer both using a separate EM optimization. This optimization is performed by each robot starting from several promising initial solutions, converging to locally-optimal hypotheses regarding data association and reference frame transformation. Choosing the best hypothesis in an incremental problem setting is in particular challenging due to high sensitivity to measurement aliasing and possibly insufficient amount of data. Selecting an incorrect hypothesis introduces outliers and can lead to catastrophic results. To address these challenges we develop a model-selection based approach to choose the most probable hypothesis, while resorting to Chinese Restaurant Process to represent statistical knowledge regarding hypothesis prior probabilities. We evaluate our approach in real-data experiments.
  • Item
    Incremental Distributed Robust Inference from Arbitrary Robot Poses via EM and Model Selection
    (Georgia Institute of Technology, 2014-07) Indelman, Vadim ; Michael, Nathan ; Dellaert, Frank
    We present a novel approach for multi-robot distributed and incremental inference over variables of interest, such as robot trajectories, considering the initial relative poses between the robots and multi-robot data association are both unknown. Assuming robots share with each other informative observations, this inference problem is formulated within an Expectation-Maximization (EM) optimization, performed by each robot separately, alternating between inference over variables of interest and multi-robot data association. To facilitate this process, a common reference frame between the robots should first be established. We show the latter is coupled with determining multi-robot data association, and therefore concurrently infer both using a separate EM optimization. This optimization is performed by each robot starting from several promising initial solutions, converging to locally-optimal hypotheses regarding data association and reference frame transformation. Choosing the best hypothesis in an incremental problem setting is in particular challenging due to high sensitivity to perceptual aliasing and possibly insufficient amount of data. Selecting an incorrect hypothesis introduces outliers and can lead to catastrophic results. To address these challenges we develop a model-selection based approach to choose the most probable hypothesis and use the Chinese restaurant process to disambiguate the hypotheses prior probabilities over time.
  • Item
    An Experimental Study of Robust Distributed Multi-Robot Data Association from Arbitrary Poses
    (Georgia Institute of Technology, 2014-06) Nelson, Erik ; Indelman, Vadim ; Michael, Nathan ; Dellaert, Frank
    In this work, we experimentally investigate the problem of computing the relative transformation between multiple vehicles from corresponding interrobot observations during autonomous operation in a common unknown environment. Building on our prior work, we consider an EM-based methodology which evaluates sensory observations gathered over vehicle trajectories to establish robust relative pose transformations between robots. We focus on experimentally evaluating the performance of the approach as well as its computational complexity and shared data requirements using multiple autonomous vehicles (aerial robots). We describe an observation subsampling technique which utilizes laser scan autocovariance to reduce the total number of observations shared between robots. Employing this technique reduces run time of the algorithm significantly, while only slightly diminishing the accuracies of computed inter-robot transformations. Finally, we provide discussion on data transfer and the feasibility of implementing the approach on a mesh network.
  • Item
    Planning Under Uncertainty in the Continuous Domain: A Generalized Belief Space Approach
    (Georgia Institute of Technology, 2014) Indelman, Vadim ; Carlone, Luca ; Dellaert, Frank
    This work investigates the problem of planning under uncertainty, with application to mobile robotics. We propose a probabilistic framework in which the robot bases its decisions on the generalized belief , which is a probabilistic description of its own state and of external variables of interest. The approach naturally leads to a dual-layer architecture: an inner estimation layer, which performs inference to predict the outcome of possible decisions, and an outer decisional layer which is in charge of deciding the best action to undertake. The approach does not discretize the state or control space, and allows planning in continuous domain. Moreover, it allows to relax the assumption of maximum likelihood observations: predicted measurements are treated as random variables and are not considered as given. Experimental results show that our planning approach produces smooth trajectories while maintaining uncertainty within reasonable bounds.
  • Item
    Eliminating Conditionally Independent Sets in Factor Graphs: A Unifying Perspective based on Smart Factors
    (Georgia Institute of Technology, 2014) Carlone, Luca ; Kira, Zsolt ; Beall, Chris ; Indelman, Vadim ; Dellaert, Frank
    Factor graphs are a general estimation framework that has been widely used in computer vision and robotics. In several classes of problems a natural partition arises among variables involved in the estimation. A subset of the variables are actually of interest for the user: we call those target variables. The remaining variables are essential for the formulation of the optimization problem underlying maximum a posteriori (MAP) estimation; however these variables, that we call support variables, are not strictly required as output of the estimation problem. In this paper, we propose a systematic way to abstract support variables, defining optimization problems that are only defined over the set of target variables. This abstraction naturally leads to the definition of smart factors, which correspond to constraints among target variables. We show that this perspective unifies the treatment of heterogeneous problems, ranging from structureless bundle adjustment to robust estimation in SLAM. Moreover, it enables to exploit the underlying structure of the optimization problem and the treatment of degenerate instances, enhancing both computational efficiency and robustness.
  • Item
    Multi-Robot Pose Graph Localization and Data Association from Unknown Initial Relative Poses via Expectation Maximization
    (Georgia Institute of Technology, 2014) Indelman, Vadim ; Nelson, Erik ; Michael, Nathan ; Dellaert, Frank
    This paper presents a novel approach for multi- robot pose graph localization and data association without requiring prior knowledge about the initial relative poses of the robots. Without a common reference frame, the robots can only share observations of interesting parts of the environment, and trying to match between observations from different robots will result in many outlier correspondences. Our approach is based on the following key observation: while each multi-robot correspondence can be used in conjunction with the local robot estimated trajectories, to calculate the transformation between the robot reference frames, only the inlier correspondences will be similar to each other. Using this concept, we develop an expectation-maximization (EM) approach to efficiently infer the robot initial relative poses and solve the multi-robot data association problem. Once this transformation between the robot reference frames is estimated with sufficient measure of confidence, we show that a similar EM formulation can be used to solve also the full multi-robot pose graph problem with unknown multi-robot data association. We evaluate the performance of the developed approach both in a statistical synthetic-environment study and in a real-data experiment, demonstrating its robustness to high percentage of outliers.
  • Item
    Towards Planning in Generalized Belief Space
    (Georgia Institute of Technology, 2013-12) Indelman, Vadim ; Carlone, Luca ; Dellaert, Frank
    We investigate the problem of planning under uncertainty, which is of interest in several robotic applications, ranging from autonomous navigation to manipulation. Recent effort from the research community has been devoted to design planning approaches working in a continuous domain, relaxing the assumption that the controls belong to a finite set. In this case robot policy is computed from the current robot belief (planning in belief space), while the environment in which the robot moves is usually assumed to be known or partially known. We contribute to this branch of the literature by relaxing the assumption of known environment; for this purpose we introduce the concept of generalized belief space (GBS), in which the robot maintains a joint belief over its state and the state of the environment. We use GBS within a Model Predictive Control (MPC) scheme; our formulation is valid for general cost functions and incorporates a dual-layer optimization: the outer layer computes the best control action, while the inner layer computes the generalized belief given the action. The resulting approach does not require prior knowledge of the environment and does not assume maximum likelihood observations. We also present an application to a specific family of cost functions and we elucidate on the theoretical derivation with numerical examples.
  • Item
    Incremental Light Bundle Adjustment for Robotics Navigation
    (Georgia Institute of Technology, 2013-11) Indelman, Vadim ; Melim, Andrew ; Dellaert, Frank
    This paper presents a new computationally-efficient method for vision-aided navigation (VAN) in autonomous robotic applications. While many VAN approaches are capable of processing incoming visual observations, incorporating loop-closure measurements typically requires performing a bundle adjustment (BA) optimization, that involves both all the past navigation states and the observed 3D points. Our approach extends the incremental light bundle adjustment (LBA) method, recently developed for structure from motion [10], to information fusion in robotics navigation and in particular for including loop-closure information. Since in many robotic applications the prime focus is on navigation rather then mapping, and as opposed to traditional BA, we algebraically eliminate the observed 3D points and do not explicitly estimate them. Computational complexity is further improved by applying incremental inference. To maintain high-rate performance over time, consecutive IMU measurements are summarized using a recently-developed technique and navigation states are added to the optimization only at camera rate. If required, the observed 3D points can be reconstructed at any time based on the optimized robot’s poses. The proposed method is compared to BA both in terms of accuracy and computational complexity in a statistical simulation study.