Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Information-based Reduced Landmark SLAM
    (Georgia Institute of Technology, 2015-05) Choudhary, Siddharth ; Indelman, Vadim ; Christensen, Henrik I. ; Dellaert, Frank
    In this paper, we present an information-based approach to select a reduced number of landmarks and poses for a robot to localize itself and simultaneously build an accurate map. We develop an information theoretic algorithm to efficiently reduce the number of landmarks and poses in a SLAM estimate without compromising the accuracy of the estimated trajectory. We also propose an incremental version of the reduction algorithm which can be used in SLAM framework resulting in information based reduced landmark SLAM. The results of reduced landmark based SLAM algorithm are shown on Victoria park dataset and a Synthetic dataset and are compared with standard graph SLAM (SAM [6]) algorithm. We demonstrate a reduction of 40-50% in the number of landmarks and around 55% in the number of poses with minimal estimation error as compared to standard SLAM algorithm.
  • Item
    Incremental Light Bundle Adjustment for Robotics Navigation
    (Georgia Institute of Technology, 2013-11) Indelman, Vadim ; Melim, Andrew ; Dellaert, Frank
    This paper presents a new computationally-efficient method for vision-aided navigation (VAN) in autonomous robotic applications. While many VAN approaches are capable of processing incoming visual observations, incorporating loop-closure measurements typically requires performing a bundle adjustment (BA) optimization, that involves both all the past navigation states and the observed 3D points. Our approach extends the incremental light bundle adjustment (LBA) method, recently developed for structure from motion [10], to information fusion in robotics navigation and in particular for including loop-closure information. Since in many robotic applications the prime focus is on navigation rather then mapping, and as opposed to traditional BA, we algebraically eliminate the observed 3D points and do not explicitly estimate them. Computational complexity is further improved by applying incremental inference. To maintain high-rate performance over time, consecutive IMU measurements are summarized using a recently-developed technique and navigation states are added to the optimization only at camera rate. If required, the observed 3D points can be reconstructed at any time based on the optimized robot’s poses. The proposed method is compared to BA both in terms of accuracy and computational complexity in a statistical simulation study.
  • Item
    DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping
    (Georgia Institute of Technology, 2013-05) Cunningham, Alexander ; Indelman, Vadim ; Dellaert, Frank
    This paper presents an consistent decentralized data fusion approach for robust multi-robot SLAM in dan- gerous, unknown environments. The DDF-SAM 2.0 approach extends our previous work by combining local and neigh- borhood information in a single, consistent augmented local map, without the overly conservative approach to avoiding information double-counting in the previous DDF-SAM algo- rithm. We introduce the anti-factor as a means to subtract information in graphical SLAM systems, and illustrate its use to both replace information in an incremental solver and to cancel out neighborhood information from shared summarized maps. This paper presents and compares three summarization techniques, with two exact approaches and an approximation. We evaluated the proposed system in a synthetic example and show the augmented local system and the associated summarization technique do not double-count information, while keeping performance tractable.