Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 5 of 5
  • Item
    Distributed Real-time Cooperative Localization and Mapping Using an Uncertainty-Aware Expectation Maximization Approach
    (Georgia Institute of Technology, 2015-05) Dong, Jing ; Nelson, Erik ; Indelman, Vadim ; Michael, Nathan ; Dellaert, Frank
    We demonstrate distributed, online, and real-time cooperative localization and mapping between multiple robots operating throughout an unknown environment sing indirect measurements. We present a novel Expectation Maximization (EM) based approach to efficiently identify inlier multi-robot loop closures by incorporating robot pose uncertainty, which significantly improves the trajectory accuracy over long-term navigation. An EM and hypothesis based method is used to determine a common reference frame. We detail a 2D laser scan correspondence method to form robust correspondences between laser scans shared amongst robots. The implementation is experimentally validated using teams of aerial vehicles, and analyzed to determine its accuracy, computational efficiency, scalability to many robots, and robustness to varying environments. We demonstrate through multiple experiments that our method can efficiently build maps of large indoor and outdoor environments in a distributed, online, and real-time setting.
  • Item
    Distributed Navigation with Unknown Initial Poses and Data Association via Expectation Maximization
    (Georgia Institute of Technology, 2015-02) Indelman, Vadim ; Michael, Nathan ; Dellaert, Frank
    We present a novel approach for multi-robot distributed and incremental inference over variables of interest, such as robot trajectories, considering the initial relative poses between the robots and multi-robot data association are both unknown. Assuming robots share with each other informative observations, this inference problem is formulated within an Expectation-Maximization (EM) optimization, performed by each robot separately, alternating between inference over variables of interest and multi-robot data association. To facilitate this process, a common reference frame between the robots should first be established. We show the latter is coupled with determining multi-robot data association, and therefore concurrently infer both using a separate EM optimization. This optimization is performed by each robot starting from several promising initial solutions, converging to locally-optimal hypotheses regarding data association and reference frame transformation. Choosing the best hypothesis in an incremental problem setting is in particular challenging due to high sensitivity to measurement aliasing and possibly insufficient amount of data. Selecting an incorrect hypothesis introduces outliers and can lead to catastrophic results. To address these challenges we develop a model-selection based approach to choose the most probable hypothesis, while resorting to Chinese Restaurant Process to represent statistical knowledge regarding hypothesis prior probabilities. We evaluate our approach in real-data experiments.
  • Item
    Incremental Distributed Robust Inference from Arbitrary Robot Poses via EM and Model Selection
    (Georgia Institute of Technology, 2014-07) Indelman, Vadim ; Michael, Nathan ; Dellaert, Frank
    We present a novel approach for multi-robot distributed and incremental inference over variables of interest, such as robot trajectories, considering the initial relative poses between the robots and multi-robot data association are both unknown. Assuming robots share with each other informative observations, this inference problem is formulated within an Expectation-Maximization (EM) optimization, performed by each robot separately, alternating between inference over variables of interest and multi-robot data association. To facilitate this process, a common reference frame between the robots should first be established. We show the latter is coupled with determining multi-robot data association, and therefore concurrently infer both using a separate EM optimization. This optimization is performed by each robot starting from several promising initial solutions, converging to locally-optimal hypotheses regarding data association and reference frame transformation. Choosing the best hypothesis in an incremental problem setting is in particular challenging due to high sensitivity to perceptual aliasing and possibly insufficient amount of data. Selecting an incorrect hypothesis introduces outliers and can lead to catastrophic results. To address these challenges we develop a model-selection based approach to choose the most probable hypothesis and use the Chinese restaurant process to disambiguate the hypotheses prior probabilities over time.
  • Item
    An Experimental Study of Robust Distributed Multi-Robot Data Association from Arbitrary Poses
    (Georgia Institute of Technology, 2014-06) Nelson, Erik ; Indelman, Vadim ; Michael, Nathan ; Dellaert, Frank
    In this work, we experimentally investigate the problem of computing the relative transformation between multiple vehicles from corresponding interrobot observations during autonomous operation in a common unknown environment. Building on our prior work, we consider an EM-based methodology which evaluates sensory observations gathered over vehicle trajectories to establish robust relative pose transformations between robots. We focus on experimentally evaluating the performance of the approach as well as its computational complexity and shared data requirements using multiple autonomous vehicles (aerial robots). We describe an observation subsampling technique which utilizes laser scan autocovariance to reduce the total number of observations shared between robots. Employing this technique reduces run time of the algorithm significantly, while only slightly diminishing the accuracies of computed inter-robot transformations. Finally, we provide discussion on data transfer and the feasibility of implementing the approach on a mesh network.
  • Item
    Multi-Robot Pose Graph Localization and Data Association from Unknown Initial Relative Poses via Expectation Maximization
    (Georgia Institute of Technology, 2014) Indelman, Vadim ; Nelson, Erik ; Michael, Nathan ; Dellaert, Frank
    This paper presents a novel approach for multi- robot pose graph localization and data association without requiring prior knowledge about the initial relative poses of the robots. Without a common reference frame, the robots can only share observations of interesting parts of the environment, and trying to match between observations from different robots will result in many outlier correspondences. Our approach is based on the following key observation: while each multi-robot correspondence can be used in conjunction with the local robot estimated trajectories, to calculate the transformation between the robot reference frames, only the inlier correspondences will be similar to each other. Using this concept, we develop an expectation-maximization (EM) approach to efficiently infer the robot initial relative poses and solve the multi-robot data association problem. Once this transformation between the robot reference frames is estimated with sufficient measure of confidence, we show that a similar EM formulation can be used to solve also the full multi-robot pose graph problem with unknown multi-robot data association. We evaluate the performance of the developed approach both in a statistical synthetic-environment study and in a real-data experiment, demonstrating its robustness to high percentage of outliers.