Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Concurrent Filtering and Smoothing: A Parallel Architecture for Real-Time Navigation and Full Smoothing
    (Georgia Institute of Technology, 2014) Williams, Stephen ; Indelman, Vadim ; Kaess, Michael ; Roberts, Richard ; Leonard, John J. ; Dellaert, Frank
    We present a parallelized navigation architecture that is capable of running in real-time and incorporating long-term loop closure constraints while producing the optimal Bayesian solution. This architecture splits the inference problem into a low-latency update that incorporates new measurements using just the most recent states (filter), and a high-latency update that is capable of closing long loops and smooths using all past states (smoother). This architecture employs the probabilistic graphical models of Factor Graphs, which allows the low-latency inference and high-latency inference to be viewed as sub-operations of a single optimization performed within a single graphical model. A specific factorization of the full joint density is employed that allows the different inference operations to be performed asynchronously while still recovering the optimal solution produced by a full batch optimization. Due to the real-time, asynchronous nature of this algorithm, updates to the state estimates from the high-latency smoother will naturally be delayed until the smoother calculations have completed. This architecture has been tested within a simulated aerial environment and on real data collected from an autonomous ground vehicle. In all cases, the concurrent architecture is shown to recover the full batch solution, even while updated state estimates are produced in real-time.
  • Item
    Optical Flow Templates for Superpixel Labeling in Autonomous Robot Navigation
    (Georgia Institute of Technology, 2013-11) Roberts, Richard ; Dellaert, Frank
    Instantaneous image motion in a camera on-board a mobile robot contains rich information about the structure of the environment. We present a new framework, optical flow templates, for capturing this information and an experimental proof-of-concept that labels superpixels using them. Optical flow templates encode the possible optical flow fields due to egomotion for a specific environment shape and robot attitude. We label optical flow in superpixels with the environment shape they image according to how consistent they are with each template. Specifically, in this paper we employ templates highly relevant to mobile robot navigation. Image regions consistent with ground plane and distant structure templates likely indicate free and traversable space, while image regions consistent with neither of these are likely to be nearby objects that are obstacles. We evaluate our method qualitatively and quantitatively in an urban driving scenario, labeling the ground plane, and obstacles such as passing cars, lamp posts, and parked cars. One key advantage of this framework is low computational complexity, and we demonstrate per-frame computation times of 20ms, excluding optical flow and superpixel calculation.
  • Item
    Saliency Detection and Model-based Tracking: a Two Part Vision System for Small Robot Navigation in Forested Environments
    (Georgia Institute of Technology, 2012-05-01) Roberts, Richard ; Ta, Duy-Nguyen ; Straub, Julian ; Ok, Kyel ; Dellaert, Frank
    Towards the goal of fast, vision-based autonomous flight, localization, and map building to support local planning and control in unstructured outdoor environments, we present a method for incrementally building a map of salient tree trunks while simultaneously estimating the trajectory of a quadrotor flying through a forest. We make significant progress in a class of visual perception methods that produce low-dimensional, geometric information that is ideal for planning and navigation on aerial robots, while directing computational resources using motion saliency, which selects objects that are important to navigation and planning. By low-dimensional geometric information, we mean coarse geometric primitives, which for the purposes of motion planning and navigation are suitable proxies for real-world objects. Additionally, we develop a method for summarizing past image measurements that avoids expensive computations on a history of images while maintaining the key non-linearities that make full map and trajectory smoothing possible. We demonstrate results with data from a small, commercially-available quad-rotor flying in a challenging, forested environment.