Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 4 of 4
Thumbnail Image
Item

Distributed Navigation with Unknown Initial Poses and Data Association via Expectation Maximization

2015-02 , Indelman, Vadim , Michael, Nathan , Dellaert, Frank

We present a novel approach for multi-robot distributed and incremental inference over variables of interest, such as robot trajectories, considering the initial relative poses between the robots and multi-robot data association are both unknown. Assuming robots share with each other informative observations, this inference problem is formulated within an Expectation-Maximization (EM) optimization, performed by each robot separately, alternating between inference over variables of interest and multi-robot data association. To facilitate this process, a common reference frame between the robots should first be established. We show the latter is coupled with determining multi-robot data association, and therefore concurrently infer both using a separate EM optimization. This optimization is performed by each robot starting from several promising initial solutions, converging to locally-optimal hypotheses regarding data association and reference frame transformation. Choosing the best hypothesis in an incremental problem setting is in particular challenging due to high sensitivity to measurement aliasing and possibly insufficient amount of data. Selecting an incorrect hypothesis introduces outliers and can lead to catastrophic results. To address these challenges we develop a model-selection based approach to choose the most probable hypothesis, while resorting to Chinese Restaurant Process to represent statistical knowledge regarding hypothesis prior probabilities. We evaluate our approach in real-data experiments.

Thumbnail Image
Item

DDF-SAM 2.0: Consistent Distributed Smoothing and Mapping

2013-05 , Cunningham, Alexander , Indelman, Vadim , Dellaert, Frank

This paper presents an consistent decentralized data fusion approach for robust multi-robot SLAM in dan- gerous, unknown environments. The DDF-SAM 2.0 approach extends our previous work by combining local and neigh- borhood information in a single, consistent augmented local map, without the overly conservative approach to avoiding information double-counting in the previous DDF-SAM algo- rithm. We introduce the anti-factor as a means to subtract information in graphical SLAM systems, and illustrate its use to both replace information in an incremental solver and to cancel out neighborhood information from shared summarized maps. This paper presents and compares three summarization techniques, with two exact approaches and an approximation. We evaluated the proposed system in a synthetic example and show the augmented local system and the associated summarization technique do not double-count information, while keeping performance tractable.

Thumbnail Image
Item

Eliminating Conditionally Independent Sets in Factor Graphs: A Unifying Perspective based on Smart Factors

2014 , Carlone, Luca , Kira, Zsolt , Beall, Chris , Indelman, Vadim , Dellaert, Frank

Factor graphs are a general estimation framework that has been widely used in computer vision and robotics. In several classes of problems a natural partition arises among variables involved in the estimation. A subset of the variables are actually of interest for the user: we call those target variables. The remaining variables are essential for the formulation of the optimization problem underlying maximum a posteriori (MAP) estimation; however these variables, that we call support variables, are not strictly required as output of the estimation problem. In this paper, we propose a systematic way to abstract support variables, defining optimization problems that are only defined over the set of target variables. This abstraction naturally leads to the definition of smart factors, which correspond to constraints among target variables. We show that this perspective unifies the treatment of heterogeneous problems, ranging from structureless bundle adjustment to robust estimation in SLAM. Moreover, it enables to exploit the underlying structure of the optimization problem and the treatment of degenerate instances, enhancing both computational efficiency and robustness.

Thumbnail Image
Item

Towards Planning in Generalized Belief Space

2013-12 , Indelman, Vadim , Carlone, Luca , Dellaert, Frank

We investigate the problem of planning under uncertainty, which is of interest in several robotic applications, ranging from autonomous navigation to manipulation. Recent effort from the research community has been devoted to design planning approaches working in a continuous domain, relaxing the assumption that the controls belong to a finite set. In this case robot policy is computed from the current robot belief (planning in belief space), while the environment in which the robot moves is usually assumed to be known or partially known. We contribute to this branch of the literature by relaxing the assumption of known environment; for this purpose we introduce the concept of generalized belief space (GBS), in which the robot maintains a joint belief over its state and the state of the environment. We use GBS within a Model Predictive Control (MPC) scheme; our formulation is valid for general cost functions and incorporates a dual-layer optimization: the outer layer computes the best control action, while the inner layer computes the generalized belief given the action. The resulting approach does not require prior knowledge of the environment and does not assume maximum likelihood observations. We also present an application to a specific family of cost functions and we elucidate on the theoretical derivation with numerical examples.