Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Effects of sensory precision on mobile robot localization and mapping
    (Georgia Institute of Technology, 2010-12) Rogers, John G. ; Trevor, Alexander J. B. ; Nieto-Granda, Carlos ; Cunningham, Alexander ; Paluri, Manohar ; Michael, Nathan ; Dellaert, Frank ; Christensen, Henrik I. ; Kumar, Vijay
    This paper will explore the relationship between sensory accuracy and Simultaneous Localization and Mapping (SLAM) performance. As inexpensive robots are developed with commodity components, the relationship between performance level and accuracy will need to be determined. Experiments are presented in this paper which compare various aspects of sensor performance such as maximum range, noise, angular precision, and viewable angle. In addition, mapping results from three popular laser scanners (Hokuyo’s URG and UTM30, as well as SICK’s LMS291) are compared.
  • Item
    DDF-SAM: Fully Distributed SLAM using Constrained Factor Graphs
    (Georgia Institute of Technology, 2010) Cunningham, Alexander ; Paluri, Manohar ; Dellaert, Frank
    We address the problem of multi-robot distributed SLAM with an extended Smoothing and Mapping (SAM) approach to implement Decentralized Data Fusion (DDF). We present DDF-SAM, a novel method for efficiently and robustly distributing map information across a team of robots, to achieve scalability in computational cost and in communication bandwidth and robustness to node failure and to changes in network topology. DDF-SAM consists of three modules: (1) a local optimization module to execute single-robot SAM and condense the local graph; (2) a communication module to collect and propagate condensed local graphs to other robots, and (3) a neighborhood graph optimizer module to combine local graphs into maps describing the neighborhood of a robot. We demonstrate scalability and robustness through a simulated example, in which inference is consistently faster than a comparable naive approach.