Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Duality-based Verification Techniques for 2D SLAM
    (Georgia Institute of Technology, 2015-05) Carlone, Luca ; Dellaert, Frank
    While iterative optimization techniques for Simultaneous Localization and Mapping (SLAM) are now very efficient and widely used, none of them can guarantee global convergence to the maximum likelihood estimate. Local convergence usually implies artifacts in map reconstruction and large localization errors, hence it is very undesirable for applications in which accuracy and safety are of paramount importance. We provide a technique to verify if a given 2D SLAM solution is globally optimal. The insight is that, while computing the optimal solution is hard in general, duality theory provides tools to compute tight bounds on the optimal cost, via convex programming. These bounds can be used to evaluate the quality of a SLAM solution, hence providing a “sanity check” for state-of-the-art incremental and batch solvers. Experimental results show that our technique successfully identifies wrong estimates (i.e., local minima) in large-scale SLAM scenarios. This work, together with [1], represents a step towards the objective of having SLAM techniques with guaranteed performance, that can be used in safety-critical applications.
  • Item
    Rigid Components Identification and Rigidity Enforcement in Bearing-Only Localization using the Graph Cycle Basis
    (Georgia Institute of Technology, 2015) Tron, Roberto ; Carlone, Luca ; Dellaert, Frank ; Daniilidis, Kostas
    Bearing-only localization can be formulated in terms of optimal graph embedding: one has to assign a 2-D or 3-D position to each node in a graph while satisfying as close as possible all the bearing-only constraints on the edges. If the graph is parallel rigid, this can be done via spectral methods. When the graph is not rigid the reconstruction is ambiguous, as different subsets of vertices can be scaled differently. It is therefore important to first identify a partition of the problem into maximal rigid components. In this paper we show that the cycle basis matrix of the graph not only translates into an algorithm to identify all rigid sub-graphs, but also provides a more intuitive way to look at graph rigidity, showing, for instance, why triangulated graphs are rigid and why graphs with long cycles may loose this property. Furthermore, it provides practical tools to enforce rigidity by adding a minimal number of measurements.
  • Item
    Eliminating Conditionally Independent Sets in Factor Graphs: A Unifying Perspective based on Smart Factors
    (Georgia Institute of Technology, 2014) Carlone, Luca ; Kira, Zsolt ; Beall, Chris ; Indelman, Vadim ; Dellaert, Frank
    Factor graphs are a general estimation framework that has been widely used in computer vision and robotics. In several classes of problems a natural partition arises among variables involved in the estimation. A subset of the variables are actually of interest for the user: we call those target variables. The remaining variables are essential for the formulation of the optimization problem underlying maximum a posteriori (MAP) estimation; however these variables, that we call support variables, are not strictly required as output of the estimation problem. In this paper, we propose a systematic way to abstract support variables, defining optimization problems that are only defined over the set of target variables. This abstraction naturally leads to the definition of smart factors, which correspond to constraints among target variables. We show that this perspective unifies the treatment of heterogeneous problems, ranging from structureless bundle adjustment to robust estimation in SLAM. Moreover, it enables to exploit the underlying structure of the optimization problem and the treatment of degenerate instances, enhancing both computational efficiency and robustness.
  • Item
    Towards Planning in Generalized Belief Space
    (Georgia Institute of Technology, 2013-12) Indelman, Vadim ; Carlone, Luca ; Dellaert, Frank
    We investigate the problem of planning under uncertainty, which is of interest in several robotic applications, ranging from autonomous navigation to manipulation. Recent effort from the research community has been devoted to design planning approaches working in a continuous domain, relaxing the assumption that the controls belong to a finite set. In this case robot policy is computed from the current robot belief (planning in belief space), while the environment in which the robot moves is usually assumed to be known or partially known. We contribute to this branch of the literature by relaxing the assumption of known environment; for this purpose we introduce the concept of generalized belief space (GBS), in which the robot maintains a joint belief over its state and the state of the environment. We use GBS within a Model Predictive Control (MPC) scheme; our formulation is valid for general cost functions and incorporates a dual-layer optimization: the outer layer computes the best control action, while the inner layer computes the generalized belief given the action. The resulting approach does not require prior knowledge of the environment and does not assume maximum likelihood observations. We also present an application to a specific family of cost functions and we elucidate on the theoretical derivation with numerical examples.