Person:
Dellaert, Frank

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Visibility Learning in Large-Scale Urban Environment
    (Georgia Institute of Technology, 2011) Alcantarilla, Pablo F. ; Ni, Kai ; Bergasa, Luis M. ; Dellaert, Frank
  • Item
    Learning Visibility of Landmarks for Vision-Based Localization
    (Georgia Institute of Technology, 2010) Alcantarilla, Pablo F. ; Oh, Sang Min ; Mariottini, Gian Luca ; Bergasa, Luis M. ; Dellaert, Frank
    We aim to perform robust and fast vision-based localization using a pre-existing large map of the scene. A key step in localization is associating the features extracted from the image with the map elements at the current location. Although the problem of data association has greatly benefited from recent advances in appearance-based matching methods, less attention has been paid to the effective use of the geometric relations between the 3D map and the camera in the matching process. In this paper we propose to exploit the geometric relationship between the 3D map and the camera pose to determine the visibility of the features. In our approach, we model the visibility of every map feature w.r.t. the camera pose using a non-parametric distribution model. We learn these non-parametric distributions during the 3D reconstruction process, and develop efficient algorithms to predict the visibility of features during localization. With this approach, the matching process only uses those map features with the highest visibility score, yielding a much faster algorithm and superior localization results. We demonstrate an integrated system based on the proposed idea and highlight its potential benefits for the localization in large and cluttered environments.
  • Item
    Visual Odometry Priors for robust EKF-SLAM
    (Georgia Institute of Technology, 2010) Alcantarilla, Pablo F. ; Bergasa, Luis Miguel ; Dellaert, Frank
    One of the main drawbacks of standard visual EKF-SLAM techniques is the assumption of a general camera motion model. Usually this motion model has been implemented in the literature as a constant linear and angular velocity model. Because of this, most approaches cannot deal with sudden camera movements, causing them to lose accurate camera pose and leading to a corrupted 3D scene map. In this work we propose increasing the robustness of EKF-SLAM techniques by replacing this general motion model with a visual odometry prior, which provides a real-time relative pose prior by tracking many hundreds of features from frame to frame. We perform fast pose estimation using the two-stage RANSAC-based approach from [1]: a two-point algorithm for rotation followed by a one-point algorithm for translation. Then we integrate the estimated relative pose into the prediction step of the EKF. In the measurement update step, we only incorporate a much smaller number of landmarks into the 3D map to maintain real-time operation. Incorporating the visual odometry prior in the EKF process yields better and more robust localization and mapping results when compared to the constant linear and angular velocity model case. Our experimental results, using a stereo camera carried in hand as the only sensor, clearly show the benefits of our method against the standard constant velocity model.