Person:
Sprigle, Stephen

ORCID
0000-0003-0462-0138
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
No Thumbnail Available
Item

Friction characteristics of preventative wound dressings under clinically‐relevant conditions dataset

2020-12-15 , Sprigle, Stephen , Caminiti, Riley , Varenberg, Michael

Wound dressings can be used prophylactically or during actual treatment. Preventative dressings have become a standard of care to prevent pressure ulcers in patients while in bed. While the mechanism of the preventative benefit has not been completely explained, the friction between the dressing and linen is hypothesized as being a key performance factor. The objective of this project was to quantify the static and kinetic coefficients of friction (COF) of various brands of prophylactic dressings under the stresses experienced in situ, while the dressings are in contact with bed linen materials. The COF of six commercial dressings were calculated using tribometer measurements. The ranges of static COF were 0.333-0.542 and kinetic COF were 0.333-0.513. Four dressings exhibited COF that were consistent with skin-linen values reported in the literature and all dressing COF appear to be lower than the COF of moist skin against linen.

Thumbnail Image
Item

Video Demonstrations of Over-Ground AMPS Trials with Intermittent Torque-Controlled Propulsion

2020-10-12 , Misch, Jacob P. , Sprigle, Stephen

This repository contains videos of the Anatomical Model Propulsion System (AMPS) performing straight and curvilinear maneuvers to characterize the performance of various manual wheelchair configurations. The AMPS was configured with a torque-based motor controller. Different trajectories were deployed for different chairs. The straight maneuver features three 'acceleration phase' pushes followed by four 'steady-state phase' pushes, then the system is allowed to gradually coast to a rest. The slalom maneuver starts with one bilateral push to align the casters straight forward, followed by four alternating unilateral pushes to generate the serpentine-like turning motion. K0004 (high-strength lightweight) chairs were tested over tile and carpet, and were given higher torques than the K0005 (ultra-lightweight) chairs to achieve similar motion. Plots of each of the torque profiles are attached in .png format.

No Thumbnail Available
Item

Modeling manual wheelchair propulsion cost during straight and curvilinear trajectories dataset

2020-05-11 , Misch, Jacob , Huang, Morris , Sprigle, Stephen

Minimizing the effort to propel a manual wheelchair is important to all users in order to optimize the efficiency of maneuvering throughout the day. Assessing the propulsion cost of wheelchairs as a mechanical system is a key aspect of understanding the influences of wheelchair design and configuration. The objective of this study was to model the relationships between inertial and energy-loss parameters to the mechanical propulsion cost across different wheelchair configurations during straight and curvilinear trajectories. Inertial parameters of an occupied wheelchair and energy loss parameters of drive wheels and casters were entered into regression models representing three different maneuvers. A wheelchair-propelling robot was used to measure propulsion cost. General linear models showed strong relationships (R2 > 0.84) between the system-level costs of propulsion and the selected predictor variables representing sources of energy loss and inertial influences. System energy loss parameters were significant predictors in all three maneuvers. Yaw inertia was also a significant predictor during zero-radius turns. The results indicate that simple energy loss measurements can predict system-level performance, and inertial influences are mostly overshadowed by the increased resistive losses caused by added mass, though weight distribution can mitigate some of this added cost. Videos of the test methods used to collect this dataset (wheelchair-propelling robot performing the three maneuvers, coast-down cart test for rolling resistance, and the scrub torque test rig) can be found here: http://hdl.handle.net/1853/60553