Person:
Goldman, Daniel I.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Comparative studies reveal principles of movement on and within granular media
    (Georgia Institute of Technology, 2010-06) Ding, Yang ; Gravish, Nick ; Li, Chen ; Maladen, Ryan D. ; Mazouchova, Nicole ; Sharpe, Sarah S. ; Umbanhowar, Paul B. ; Goldman, Daniel I.
    Terrestrial locomotion can take place on complex substrates such as leaf litter, debris, and soil that flow or solidify in response to stress. While principles of movement in air and water are revealed through study of the hydrodynamic equations of fluid motion, discovery of principles of movement in complex terrestrial environments is less advanced in part because describing the physics of limb and body interaction with such environments remains challenging. We report progress our group has made in discovering principles of movement of organisms and models of organisms (robots) on and within granular materials (GM) like sand. We review current understanding of localized intrusion in GM relevant to foot and body interactions. We discuss the limb-ground interactions of a desert lizard, a hatchling sea turtle, and various robots and reveal that control of granular solidification can generate effective movement. We describe the sensitivity of movement on GM to gait parameters and discuss how changes in material state can strongly affect locomotor performance. We examine subsurface movement, common in desert animals like the sandfish lizard. High speed x-ray imaging resolves subsurface kinematics, while electromyography (EMG) allows muscle activation patterns to be studied. Our resistive force theory, numerical, and robotic models of sand-swimming reveal that subsurface swimming occurs in a “frictional fluid” whose properties differ from Newtonian fluids.
  • Item
    Systematic study of the performance of small robots on controlled laboratory substrates
    (Georgia Institute of Technology, 2010-04) Li, Chen ; Hoover, Aaron M. ; Birkmeyer, Paul ; Umbanhowar, Paul B. ; Fearing, Ronald S. ; Goldman, Daniel I.
    The design of robots able to locomote effectively over a diversity of terrain requires detailed ground interaction models; unfortunately such models are lacking due to the complicated response of real world substrates which can yield and flow in response to loading. To advance our understanding of the relevant modeling and design issues, we conduct a comparative study of the performance of DASH and RoACH, two small, biologically inspired, six legged, lightweight (~ 10 cm, ~ 20 g) robots fabricated using the smart composite microstructure (SCM) process. We systematically examine performance of both robots on rigid and °owing substrates. Varying both ground properties and limb stride frequency, we investigate average speed, mean mechanical power and cost of transport, and stability. We find that robot performance and stability is sensitive to the physics of ground interaction: on hard ground kinetic energy must be managed to prevent yaw, pitch, and roll instability to maintain high performance, while on sand the fluidizing interaction leads to increased cost of transport and lower running speeds. We also observe that the characteristic limb morphology and kinematics of each robot result in distinct differences in their abilities to traverse different terrains. Our systematic studies are the first step toward developing models of interaction of limbs with complex terrain as well as developing improved limb morphologies and control strategies.