Person:
Goldman, Daniel I.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Mechanics of undulatory swimming in a frictional fluid
    (Georgia Institute of Technology, 2012-12) Ding, Yang ; Sharpe, Sarah S. ; Masse, Andrew ; Goldman, Daniel I.
    The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere discrete element method simulation of the granular medium. In this paper, we use the simulation to study the detailed mechanics of undulatory swimming in a ‘‘granular frictional fluid’’ and compare the predictions to our previously developed resistive force theory (RFT) which models sand-swimming using empirically determined granular drag laws. The simulation reveals that the forward speed of the center of mass (CoM) oscillates about its average speed in antiphase with head drag. The coupling between overall body motion and body deformation results in a non-trivial pattern in the magnitude of lateral displacement of the segments along the body. The actuator torque and segment power are maximal near the center of the body and decrease to zero toward the head and the tail. Approximately 30% of the net swimming power is dissipated in head drag. The power consumption is proportional to the frequency in the biologically relevant range, which confirms that frictional forces dominate during sand-swimming by the sandfish. Comparison of the segmental forces measured in simulation with the force on a laterally oscillating rod reveals that a granular hysteresis effect causes the overestimation of the body thrust forces in the RFT. Our models provide detailed testable predictions for biological locomotion in a granular environment.
  • Item
    Drag induced lift in granular media
    (Georgia Institute of Technology, 2011-01-14) Ding, Yang ; Gravish, Nick ; Goldman, Daniel I.
    Laboratory experiments and numerical simulation reveal that a submerged intruder dragged horizontally at a constant velocity within a granular medium experiences a lift force whose sign and magnitude depend on the intruder shape. Comparing the stress on a flat plate at varied inclination angle with the local surface stress on the intruders at regions with the same orientation demonstrates that intruder lift forces are well approximated as the sum of contributions from flat-plate elements. The plate stress is deduced from the force balance on the flowing media near the plate.
  • Item
    Biophysically inspired development of a sand-swimming robot
    (Georgia Institute of Technology, 2011) Maladen, Ryan D. ; Ding, Yang ; Umbanhowar, Paul B. ; Kamor, Adam ; Goldman, Daniel I.
    Previous study of a sand-swimming lizard, the sandfish, Scincus scincus, revealed that the animal swims within granular media at speeds up to 0:4 body-lengths/cycle using body undulation (approximately a single period sinusoidal traveling wave) without limb use [1]. Inspired by this biological experiment and challenged by the absence of robotic devices with comparable subterranean locomotor abilities, we developed a numerical simulation of a robot swimming in a granular medium (modeled using a multi-particle discrete element method simulation) to guide the design of a physical sand-swimming device built with off-the-shelf servo motors. Both in simulation and experiment the robot swims limblessly subsurface and, like the animal, increases its speed by increasing its oscillation frequency. It was able to achieve speeds of up to 0:3 body-lengths/cycle. The performance of the robot measured in terms of its wave efficiency, the ratio of its forward speed to wave speed, was 0:34 0:02, within 8 % of the simulation prediction. Our work provides a validated simulation tool and a functional initial design for the development of robots that can move within yielding terrestrial substrates.