Person:
Hunt, William D.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    High-Q micromechanical resonators in a two-dimensional phononic crystal slab
    (Georgia Institute of Technology, 2009-02) Mohammadi, Saeed ; Eftekhar, Ali Asghar ; Hunt, William D. ; Adibi, Ali
    By creating line defects in the structure of a phononic crystal (PC) made by etching a hexagonal array of holes in a 15 μm thick slab of silicon, high-Q PC resonators are fabricated using a complimentary-metal-oxide-semiconductor-compatible process. The complete phononic band gap of the PC structure supports resonant modes with quality factors of more than 6000 at frequencies as high as 126 MHz. The confinement of acoustic energy is achieved by using only a few PC layers confining the cavity region. The calculated frequencies of resonance of the structure using finite element method are in a very good agreement with the experimental data. The performance of these PC resonator structures makes them excellent candidates for wireless communication and sensing applications.
  • Item
    Evidence of large high frequency complete phononic band gaps in silicon phononic crystal plates
    (Georgia Institute of Technology, 2008-06-02) Mohammadi, Saeed ; Eftekhar, Ali Asghar ; Khelif, Abdelkrim ; Hunt, William D. ; Adibi, Ali
    We show the evidence of the existence of large complete phononic band gaps (CPBGs) in two-dimensional phononic crystals (PCs) formed by embedding cylindrical air holes in a solid plate (slab). The PC structure is made by etching a hexagonal array of air holes through a freestanding plate of silicon. A fabrication process compatible with metal-oxide-semiconductor technology is used on silicon-on-insulator substrate to realize the PC devices. Measuring the transmission of elastic waves through eight layers of the hexagonal lattice PC in the ΓK direction, more than 30 dB attenuation is observed at a high frequency; i.e., 134 MHz, with a band gap to midgap ratio of 23%. We show that this frequency region matches very well with the expected CPBG found through theoretical calculations.