Person:
Walker, Bruce N.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 4 of 4
Thumbnail Image
Item

Learnabiltiy of Sound Cues for Environmental Features: Auditory Icons, Earcons, Spearcons, and Speech

2008-06 , Dingler, Tilman , Lindsay, Jeffrey , Walker, Bruce N.

Awareness of features in our environment is essential for many daily activities. While often awareness of such features comes from vision, this modality is sometimes unavailable or undesirable. In these instances, auditory cues can be an excellent method of representing environmental features. The study reported here investigated the learnability of well known (auditory icons, earcons, and speech) and more novel (spearcons, earcon-icon hybrids, and sized hybrids) sonification techniques for representing common environmental features. Spearcons, which are speech stimuli that have been greatly sped up, were found to be as learnable as speech, while earcons unsurprisingly were much more difficult to learn. Practical implications are discussed.

Thumbnail Image
Item

The audio abacus: Representing a wide range of values with accuracy and precision

2004-07 , Godfrey, Justin , Lindsay, Jeffrey , Walker, Bruce N.

Point estimation is a relatively unexplored facet of sonfication. We present a new computer application, the Audio Abacus, designed to transform numbers into tones following the analogy of an abacus. As this is an entirely novel approach to sonifying exact data values, we have begun a systematic line of investigation into the application settings that work most effectively. Results are presented for an initial study. Users were able to perform relatively well with very little practice or training, boding well for this type of display. Further investigations are planned.

Thumbnail Image
Item

Spearcons: speech-based earcons improve navigation performance in auditory menus

2006-06 , Walker, Bruce N. , Nance, Amanda , Lindsay, Jeffrey

With shrinking displays and increasing technology use by visually impaired users, it is important to improve usability with non-GUI interfaces such as menus. Using non-speech sounds called earcons or auditory icons has been proposed to enhance menu navigation. We compared search time and accuracy of menu navigation using four types of auditory representations: speech only; hierarchical earcons; auditory icons; and a new type called spearcons. Spearcons are created by speeding up a spoken phrase until it is not recognized as speech. Using a within-subjects design, participants searched a 5 x 5 menu for target items using each type of audio cue. Spearcons and speech-only both led to faster and more accurate menu navigation than auditory icons and hierarchical earcons. There was a significant practice effect for search time, within each type of auditory cue. These results suggest that spearcons are more effective than previous auditory cues in menu-based interfaces, and may lead to better performance and accuracy, as well as more flexible menu structures.

Thumbnail Image
Item

Navigation performance in a virtual environment with bonephones

2005-07 , Walker, Bruce N. , Lindsay, Jeffrey

Audio navigation interfaces have traditionally been studied (and implemented) using headphones. However, many potential users (especially those with visual impairments) are hesitant to adopt these emerging wayfinding technologies if doing so requires them to reduce their ability to hear environmental sounds by wearing headphones. In this study we examined the performance of the SWAN audio navigation interface using bone-conduction headphones (``bonephones''), which do not cover the ear. Bonephones enabled all participants to complete the navigation tasks with good efficiencies, though not immediately as effective as regular headphones. Given the functional success here, and considering that the spatialization routines were not optimized for bonephones (this essentially represents a worst-case scenario), the prospects are excellent for more widespread usage of bone conduction for auditory navigation, and likely for many other auditory displays.