Organizational Unit:
Environmental Microbial Genomics Laboratory

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 14
  • Item
    Low Richness -- Set 1
    (Georgia Institute of Technology, 2014-02-03) Konstantinidis, Kostas T. ; Rodriguez, Luis M.
    Motivation: Determining the fraction of the diversity within a microbial community sampled and the amount of sequencing required to cover the total diversity represent challenging issues for metagenomics studies. Due to these limitations, central ecological questions with respect to the global distribution of microbes and the functional diversity of their communities cannot be robustly assessed. Results: We introduce Nonpareil, a method to estimate and project coverage in metagenomes. Nonpareil does not rely on high-quality assemblies, OTU calling, or comprehensive reference databases; thus, it is broadly applicable to metagenomic studies. Application of Nonpareil on available metagenomic datasets provided estimates on the relative complexity of soil, freshwater and human microbiome communities, and suggested that about 200Gb of sequencing data are required for 95% abundance-weighted average coverage of the soil communities analyzed.
  • Item
    All Complete Bacterial and Archeal Genomes -- Set 6
    (Georgia Institute of Technology, 2014-02-03) Konstantinidis, Kostas T. ; Rodriguez, Luis M.
    Motivation: Determining the fraction of the diversity within a microbial community sampled and the amount of sequencing required to cover the total diversity represent challenging issues for metagenomics studies. Due to these limitations, central ecological questions with respect to the global distribution of microbes and the functional diversity of their communities cannot be robustly assessed. Results: We introduce Nonpareil, a method to estimate and project coverage in metagenomes. Nonpareil does not rely on high-quality assemblies, OTU calling, or comprehensive reference databases; thus, it is broadly applicable to metagenomic studies. Application of Nonpareil on available metagenomic datasets provided estimates on the relative complexity of soil, freshwater and human microbiome communities, and suggested that about 200Gb of sequencing data are required for 95% abundance-weighted average coverage of the soil communities analyzed.
  • Item
    All Complete Bacterial and Archeal Genomes -- Set 3
    (Georgia Institute of Technology, 2014-02-03) Konstantinidis, Kostas T. ; Rodriguez, Luis M.
    Motivation: Determining the fraction of the diversity within a microbial community sampled and the amount of sequencing required to cover the total diversity represent challenging issues for metagenomics studies. Due to these limitations, central ecological questions with respect to the global distribution of microbes and the functional diversity of their communities cannot be robustly assessed. Results: We introduce Nonpareil, a method to estimate and project coverage in metagenomes. Nonpareil does not rely on high-quality assemblies, OTU calling, or comprehensive reference databases; thus, it is broadly applicable to metagenomic studies. Application of Nonpareil on available metagenomic datasets provided estimates on the relative complexity of soil, freshwater and human microbiome communities, and suggested that about 200Gb of sequencing data are required for 95% abundance-weighted average coverage of the soil communities analyzed.
  • Item
    Escherichia Genomes -- Set 2
    (Georgia Institute of Technology, 2014-02-03) Konstantinidis, Kostas T. ; Rodriguez, Luis M.
    Motivation: Determining the fraction of the diversity within a microbial community sampled and the amount of sequencing required to cover the total diversity represent challenging issues for metagenomics studies. Due to these limitations, central ecological questions with respect to the global distribution of microbes and the functional diversity of their communities cannot be robustly assessed. Results: We introduce Nonpareil, a method to estimate and project coverage in metagenomes. Nonpareil does not rely on high-quality assemblies, OTU calling, or comprehensive reference databases; thus, it is broadly applicable to metagenomic studies. Application of Nonpareil on available metagenomic datasets provided estimates on the relative complexity of soil, freshwater and human microbiome communities, and suggested that about 200Gb of sequencing data are required for 95% abundance-weighted average coverage of the soil communities analyzed.
  • Item
    All Complete Bacterial and Archeal Genomes -- Set 7
    (Georgia Institute of Technology, 2014-02-03) Konstantinidis, Kostas T. ; Rodriguez, Luis M.
    Motivation: Determining the fraction of the diversity within a microbial community sampled and the amount of sequencing required to cover the total diversity represent challenging issues for metagenomics studies. Due to these limitations, central ecological questions with respect to the global distribution of microbes and the functional diversity of their communities cannot be robustly assessed. Results: We introduce Nonpareil, a method to estimate and project coverage in metagenomes. Nonpareil does not rely on high-quality assemblies, OTU calling, or comprehensive reference databases; thus, it is broadly applicable to metagenomic studies. Application of Nonpareil on available metagenomic datasets provided estimates on the relative complexity of soil, freshwater and human microbiome communities, and suggested that about 200Gb of sequencing data are required for 95% abundance-weighted average coverage of the soil communities analyzed.
  • Item
    Low Richness -- Set 2
    (Georgia Institute of Technology, 2014-02-03) Konstantinidis, Kostas T. ; Rodriguez, Luis M.
    Motivation: Determining the fraction of the diversity within a microbial community sampled and the amount of sequencing required to cover the total diversity represent challenging issues for metagenomics studies. Due to these limitations, central ecological questions with respect to the global distribution of microbes and the functional diversity of their communities cannot be robustly assessed. Results: We introduce Nonpareil, a method to estimate and project coverage in metagenomes. Nonpareil does not rely on high-quality assemblies, OTU calling, or comprehensive reference databases; thus, it is broadly applicable to metagenomic studies. Application of Nonpareil on available metagenomic datasets provided estimates on the relative complexity of soil, freshwater and human microbiome communities, and suggested that about 200Gb of sequencing data are required for 95% abundance-weighted average coverage of the soil communities analyzed.
  • Item
    Escherichia Genomes -- Set 1
    (Georgia Institute of Technology, 2014-01-31) Konstantinidis, Kostas T. ; Rodriguez, Luis M.
    Motivation: Determining the fraction of the diversity within a microbial community sampled and the amount of sequencing required to cover the total diversity represent challenging issues for metagenomics studies. Due to these limitations, central ecological questions with respect to the global distribution of microbes and the functional diversity of their communities cannot be robustly assessed. Results: We introduce Nonpareil, a method to estimate and project coverage in metagenomes. Nonpareil does not rely on high-quality assemblies, OTU calling, or comprehensive reference databases; thus, it is broadly applicable to metagenomic studies. Application of Nonpareil on available metagenomic datasets provided estimates on the relative complexity of soil, freshwater and human microbiome communities, and suggested that about 200Gb of sequencing data are required for 95% abundance-weighted average coverage of the soil communities analyzed.
  • Item
    Escherichia Genomes -- Set 6
    (Georgia Institute of Technology, 2014-01-31) Konstantinidis, Kostas T. ; Rodriguez, Luis M.
    Motivation: Determining the fraction of the diversity within a microbial community sampled and the amount of sequencing required to cover the total diversity represent challenging issues for metagenomics studies. Due to these limitations, central ecological questions with respect to the global distribution of microbes and the functional diversity of their communities cannot be robustly assessed. Results: We introduce Nonpareil, a method to estimate and project coverage in metagenomes. Nonpareil does not rely on high-quality assemblies, OTU calling, or comprehensive reference databases; thus, it is broadly applicable to metagenomic studies. Application of Nonpareil on available metagenomic datasets provided estimates on the relative complexity of soil, freshwater and human microbiome communities, and suggested that about 200Gb of sequencing data are required for 95% abundance-weighted average coverage of the soil communities analyzed.
  • Item
    All Complete Bacterial and Archeal Genomes -- Set 5
    (Georgia Institute of Technology, 2014-01-31) Konstantinidis, Kostas T. ; Rodriguez, Luis M.
    Motivation: Determining the fraction of the diversity within a microbial community sampled and the amount of sequencing required to cover the total diversity represent challenging issues for metagenomics studies. Due to these limitations, central ecological questions with respect to the global distribution of microbes and the functional diversity of their communities cannot be robustly assessed. Results: We introduce Nonpareil, a method to estimate and project coverage in metagenomes. Nonpareil does not rely on high-quality assemblies, OTU calling, or comprehensive reference databases; thus, it is broadly applicable to metagenomic studies. Application of Nonpareil on available metagenomic datasets provided estimates on the relative complexity of soil, freshwater and human microbiome communities, and suggested that about 200Gb of sequencing data are required for 95% abundance-weighted average coverage of the soil communities analyzed.
  • Item
    Escherichia Genomes -- Set 4
    (Georgia Institute of Technology, 2014-01-31) Konstantinidis, Kostas T. ; Rodriguez, Luis M.
    Motivation: Determining the fraction of the diversity within a microbial community sampled and the amount of sequencing required to cover the total diversity represent challenging issues for metagenomics studies. Due to these limitations, central ecological questions with respect to the global distribution of microbes and the functional diversity of their communities cannot be robustly assessed. Results: We introduce Nonpareil, a method to estimate and project coverage in metagenomes. Nonpareil does not rely on high-quality assemblies, OTU calling, or comprehensive reference databases; thus, it is broadly applicable to metagenomic studies. Application of Nonpareil on available metagenomic datasets provided estimates on the relative complexity of soil, freshwater and human microbiome communities, and suggested that about 200Gb of sequencing data are required for 95% abundance-weighted average coverage of the soil communities analyzed.