Organizational Unit:
Healthcare Robotics Lab

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 10 of 44
  • Item
    Haptic Simulation for Robot-Assisted Dressing
    (Georgia Institute of Technology, 2017) Yu, Wenhao ; Kapusta, Ariel ; Tan, Jie ; Kemp, Charles C. ; Turk, Greg ; Liu, C. Karen
    There is a considerable need for assistive dressing among people with disabilities, and robots have the potential to fulfill this need. However, training such a robot would require extensive trials in order to learn the skills of assistive dressing. Such training would be time-consuming and require considerable effort to recruit participants and conduct trials. In addition, for some cases that might cause injury to the person being dressed, it is impractical and unethical to perform such trials. In this work, we focus on a representative dressing task of pulling the sleeve of a hospital gown onto a person’s arm. We present a system that learns a haptic classifier for the outcome of the task given few (2-3) real-world trials with one person. Our system first optimizes the parameters of a physics simulator using real-world data. Using the optimized simulator, the system then simulates more haptic sensory data with noise models that account for randomness in the experiment. We then train hidden Markov Models (HMMs) on the simulated haptic data. The trained HMMs can then be used to classify and predict the outcome of the assistive dressing task based on haptic signals measured by a real robot’s end effector. This system achieves 92.83% accuracy in classifying the outcome of the robot-assisted dressing task with people not included in simulation optimization. We compare our classifiers to those trained on real-world data. We show that the classifiers from our system can categorize the dressing task outcomes more accurately than classifiers trained on ten times more real data.
  • Item
    Multimodal Execution Monitoring for Anomaly Detection During Robot Manipulation
    (Georgia Institute of Technology, 2016-05) Park, Daehyung ; Erickson, Zackory ; Bhattacharjee, Tapomayukh ; Kemp, Charles C.
    Online detection of anomalous execution can be valuable for robot manipulation, enabling robots to operate more safely, determine when a behavior is inappropriate, and otherwise exhibit more common sense. By using multiple complementary sensory modalities, robots could potentially detect a wider variety of anomalies, such as anomalous contact or a loud utterance by a human. However, task variability and the potential for false positives make online anomaly detection challenging, especially for long-duration manipulation behaviors. In this paper, we provide evidence for the value of multimodal execution monitoring and the use of a detection threshold that varies based on the progress of execution. Using a data-driven approach, we train an execution monitor that runs in parallel to a manipulation behavior. Like previous methods for anomaly detection, our method trains a hidden Markov model (HMM) using multimodal observations from non-anomalous executions. In contrast to prior work, our system also uses a detection threshold that changes based on the execution progress. We evaluated our approach with haptic, visual, auditory, and kinematic sensing during a variety of manipulation tasks performed by a PR2 robot. The tasks included pushing doors closed, operating switches, and assisting ablebodied participants with eating yogurt. In our evaluations, our anomaly detection method performed substantially better with multimodal monitoring than single modality monitoring. It also resulted in more desirable ROC curves when compared with other detection threshold methods from the literature, obtaining higher true positive rates for comparable false positive rates.
  • Item
    Autobed: Open Hardware for Accessible Web-based Control of an Electric Bed
    (Georgia Institute of Technology, 2016) Grice, Phillip M. ; Chitalia, Yash ; Rich, Megan ; Clever, Henry M. ; Kemp, Charles C.
    Individuals with severe motor impairments often have difficulty operating the standard controls of electric beds and so require a caregiver to adjust their position for utility, comfort, or to prevent pressure ulcers. Assistive human-computer interaction devices allow many such individuals to operate a computer and web browser. Here, we present the Autobed, a Wi-Fi-connected device that enables control of an Invacare Full-Electric Homecare Bed, a Medicare-approved device in the US, from any modern web browser, without modification of existing hardware. We detail the design and operation of the Autobed. We also examine its usage by one individual with severe motor impairments and his primary caregiver in their own home, including usage logs from a period of 102 days and detailed questionnaires. Finally, we make the entire system, including hardware design and components, software, and build instructions, available under permissive open-source licenses.
  • Item
    Material Recognition from Heat Transfer given Varying Initial Conditions and Short-Duration Contact
    (Georgia Institute of Technology, 2015) Bhattacharjee, Tapomayukh ; Wade, Joshua ; Kemp, Charles C.
    When making contact with an object, a robot can use a tactile sensor consisting of a heating element and a temperature sensor to recognize the object’s material based on conductive heat transfer from the tactile sensor to the object. When this type of tactile sensor has time to fully reheat prior to contact and the duration of contact is long enough to achieve a thermal steady state, numerous methods have been shown to perform well. In order to enable robots to more efficiently sense their environments and take advantage of brief contact events over which they lack control, we focus on the problem of material recognition from heat transfer given varying initial conditions and short-duration contact. We present both modelbased and data-driven methods. For the model-based method, we modeled the thermodynamics of the sensor in contact with a material as contact between two semi-infinite solids. For the data-driven methods, we used three machine learning algorithms (SVM+PCA, k-NN+PCA, HMMs) with time series of raw temperature measurements and temperature change estimates. When recognizing 11 materials with varying initial conditions and 3- fold cross-validation, SVM+PCA outperformed all other methods, achieving 84% accuracy
  • Item
    A Robotic System for Reaching in Dense Clutter that Integrates Model Predictive Control, Learning, Haptic Mapping, and Planning
    (Georgia Institute of Technology, 2014-09) Bhattacharjee, Tapomayukh ; Grice, Phillip M. ; Kapusta, Ariel ; Killpack, Marc D. ; Park, Daehyung ; Kemp, Charles C.
    We present a system that enables a robot to reach locations in dense clutter using only haptic sensing. Our system integrates model predictive control [1], learned initial conditions [2], tactile recognition of object types [3], haptic mapping, and geometric planning to efficiently reach locations using whole- arm tactile sensing [4]. We motivate our work, present a system architecture, summarize each component of the system, and present results from our evaluation of the system reaching to target locations in dense artificial foliage.
  • Item
    Learning to Reach into the Unknown: Selecting Initial Conditions When Reaching in Clutter
    (Georgia Institute of Technology, 2014-09) Park, Daehyung ; Kapusta, Ariel ; Kim, You Keun ; Rehg, James M. ; Kemp, Charles C.
    Often in highly-cluttered environments, a robot can observe the exterior of the environment with ease, but cannot directly view nor easily infer its detailed internal structure (e.g., dense foliage or a full refrigerator shelf). We present a data-driven approach that greatly improves a robot’s success at reaching to a goal location in the unknown interior of an environment based on observable external properties, such as the category of the clutter and the locations of openings into the clutter (i.e., apertures). We focus on the problem of selecting a good initial configuration for a manipulator when reaching with a greedy controller. We use density estimation to model the probability of a successful reach given an initial condition and then perform constrained optimization to find an initial condition with the highest estimated probability of success. We evaluate our approach with two simulated robots reaching in clutter, and provide a demonstration with a real PR2 robot reaching to locations through random apertures. In our evaluations, our approach significantly outperformed two alter- native approaches when making two consecutive reach attempts to goals in distinct categories of unknown clutter. Notably, our approach only uses sparse readily-apparent features.
  • Item
    Finding and Navigating to Household Objects with UHF RFID Tags by Optimizing RF Signal Strength
    (Georgia Institute of Technology, 2014-09) Deyle, Travis ; Reynolds, Matthew S. ; Kemp, Charles C.
    We address the challenge of finding and navigating to an object with an attached ultra-high frequency radio- frequency identification (UHF RFID) tag. With current off-the- shelf technology, one can affix inexpensive self-adhesive UHF RFID tags to hundreds of objects, thereby enabling a robot to sense the RF signal strength it receives from each uniquely identified object. The received signal strength indicator (RSSI) associated with a tagged object varies widely and depends on many factors, including the object’s pose, material prop- erties and surroundings. This complexity creates challenges for methods that attempt to explicitly estimate the object’s pose. We present an alternative approach that formulates finding and navigating to a tagged object as an optimization problem where the robot must find a pose of a directional antenna that maximizes the RSSI associated with the target tag. We then present three autonomous robot behaviors that together perform this optimization by combining global and local search. The first behavior uses sparse sampling of RSSI across the entire environment to move the robot to a location near the tag; the second samples RSSI over orientation to point the robot toward the tag; and the third samples RSSI from two antennas pointing in different directions to enable the robot to approach the tag. We justify our formulation using the radar equation and associated literature. We also demonstrate that it has good performance in practice via tests with a PR2 robot from Willow Garage in a house with a variety of tagged household objects.
  • Item
    Interleaving Planning and Control for Efficient Haptically-guided Reaching in Unknown Environments
    (Georgia Institute of Technology, 2014) Park, Daehyung ; Kapusta, Ariel ; Hawke, Jeffrey ; Kemp, Charles C.
    We present a new method for reaching in an initially unknown environment with only haptic sensing. In this paper, we propose a haptically-guided interleaving planning and control (HIPC) method with a haptic mapping framework. HIPC runs two planning methods, interleaving a task-space and a joint-space planner, to provide fast reaching performance. It continually replans a valid trajectory, alternating between planners and quickly reflecting collected tactile information from an unknown environment. One key idea is that tactile sensing can be used to directly map an immediate cause of interference when reaching. The mapping framework efficiently assigns raw tactile information from whole-arm tactile sensors into a 3D voxel-based collision map. Our method uses a previously published contact-regulating controller based on model predictive control (MPC). In our evaluation with a physics simulation of a humanoid robot, interleaving was superior at reaching in the 9 types of environments we used.
  • Item
    Rapid Categorization of Object Properties from Incidental Contact with a Tactile Sensing Robot Arm,
    (Georgia Institute of Technology, 2013-10) Bhattacharjee, Tapomayukh ; Kapusta, Ariel ; Rehg, James M. ; Kemp, Charles C.
    We demonstrate that data-driven methods can be used to rapidly categorize objects encountered through incidental contact on a robot arm. Allowing incidental contact with surrounding objects has benefits during manipulation such as increasing the workspace during reaching tasks. The information obtained from such contact, if available online, can potentially be used to map the environment and help in manipulation tasks. In this paper, we address this problem of online categorization using incidental contact during goal oriented motion. In cluttered environments, the detailed internal structure of clutter can be difficult to infer, but the environment type is often apparent. In a randomized cluttered environment of known object types and “outliers”, our approach uses Hidden Markov Models to capture the dynamic robot-environment interactions and to categorize objects based on the interactions. We combined leaf and trunk objects to create artificial foliage as a test environment. We collected data using a skin-sensor on the robot’s forearm while it reached into clutter. Our algorithm classifies the objects rapidly with low computation time and few data-samples. Using a taxel-by-taxel classification approach, we can successfully categorize simultaneous contacts with multiple objects and can also identify outlier objects in the environment based on the prior associated with an object’s likelihood in the given environment.
  • Item
    Fast Reaching in Clutter While Regulating Forces Using Model Predictive Control
    (Georgia Institute of Technology, 2013-10) Killpack, Marc D. ; Kemp, Charles C.
    Moving a robot arm quickly in cluttered and unmodeled workspaces can be difficult because of the inherent risk of high impact forces. Additionally, compliance by itself is not enough to limit contact forces due to multi-contact phenomena (jamming, etc.). The work in this paper extends our previous research on manipulation in cluttered environments by explicitly modeling robot arm dynamics and using model predictive control (MPC) with whole-arm tactile sensing to improve the speed and force control. We first derive discretetime dynamic equations of motion that we use for MPC. Then we formulate a multi-time step model predictive controller that uses this dynamic model. These changes allow us to control contact forces while increasing overall end effector speed. We also describe a constraint that regulates joint velocities in order to mitigate unexpected impact forces while reaching to a goal. We present results using tests from a simulated three link planar arm that is representative of the kinematics and mass of an average male’s torso, shoulder and elbow joints reaching in high and low clutter scenarios. These results show that our controller allows the arm to reach a goal up to twice as fast as our previous work, while still controlling the contact forces to be near a user-defined threshold.