Organizational Unit:
Healthcare Robotics Lab

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Whole-arm Tactile Sensing for Beneficial and Acceptable Contact During Robotic Assistance
    (Georgia Institute of Technology, 2013-06) Grice, Phillip M. ; Killpack, Marc D. ; Jain, Advait ; Vaish, Sarvagya ; Hawke, Jeffrey ; Kemp, Charles C.
    Many assistive tasks involve manipulation near the care-receiver's body, including self-care tasks such as dressing, feeding, and personal hygiene. A robot can provide assistance with these tasks by moving its end effector to poses near the care-receiver's body. However, perceiving and maneuvering around the care-receiver's body can be challenging due to a variety of issues, including convoluted geometry, compliant materials, body motion, hidden surfaces, and the object upon which the body is resting (e.g., a wheelchair or bed). Using geometric simulations, we first show that an assistive robot can achieve a much larger percentage of end-effector poses near the care-receiver's body if its arm is allowed to make contact. Second, we present a novel system with a custom controller and whole-arm tactile sensor array that enables a Willow Garage PR2 to regulate contact forces across its entire arm while moving its end effector to a commanded pose. We then describe tests with two people with motor impairments, one of whom used the system to grasp and pull a blanket over himself and to grab a cloth and wipe his face, all while in bed at his home. Finally, we describe a study with eight able-bodied users in which they used the system to place objects near their bodies. On average, users perceived the system to be safe and comfortable, even though substantial contact occurred between the robot's arm and the user's body.
  • Item
    Reaching in clutter with whole-arm tactile sensing
    (Georgia Institute of Technology, 2013-04) Jain, Advait ; Killpack, Marc D. ; Edsinger, Aaron ; Kemp, Charles C.
    Clutter creates challenges for robot manipulation, including a lack of non-contact trajectories and reduced visibility for line-of-sight sensors. We demonstrate that robots can use whole-arm tactile sensing to perceive clutter and maneuver within it, while keeping contact forces low. We first present our approach to manipulation, which emphasizes the benefits of making contact across the entire manipulator and assumes the manipulator has low-stiffness actuation and tactile sensing across its entire surface. We then present a novel controller that exploits these assumptions. The controller only requires haptic sensing, handles multiple contacts, and does not need an explicit model of the environment prior to contact. It uses model predictive control with a time horizon of length one and a linear quasi-static mechanical model. In our experiments, the controller enabled a real robot and a simulated robot to reach goal locations in a variety of environments, including artificial foliage, a cinder block, and randomly generated clutter, while keeping contact forces low. While reaching, the robots performed maneuvers that included bending objects, compressing objects, sliding objects, and pivoting around objects. In simulation, whole-arm tactile sensing also outperformed per-link force–torque sensing in moderate clutter, with the relative benefits increasing with the amount of clutter.
  • Item
    Tactile Sensing over Articulated Joints with Stretchable Sensors
    (Georgia Institute of Technology, 2013-04) Bhattacharjee, Tapomayukh ; Jain, Advait ; Vaish, Sarvagya ; Killpack, Marc D. ; Kemp, Charles C.
    Biological organisms benefit from tactile sensing across the entire surfaces of their bodies. Robots may also be able to benefit from this type of sensing, but fully covering a robot with robust and capable tactile sensors entails numerous challenges. To date, most tactile sensors for robots have been used to cover rigid surfaces. In this paper, we focus on the challenge of tactile sensing across articulated joints, which requires sensing across a surface whose geometry varies over time. We first demonstrate the importance of sensing across joints by simulating a planar arm reaching in clutter and finding the frequency of contact at the joints. We then present a simple model of how much a tactile sensor would need to stretch in order to cover a 2 degree-of-freedom (DoF) wrist joint. Next, we describe and characterize a new tactile sensor made with stretchable fabrics. Finally, we present results for a stretchable sleeve with 25 tactile sensors that covers the forearm, 2 DoF wrist, and end effector of a humanoid robot. This sleeve enabled the robot to reach a target in instrumented clutter and reduce contact forces.