Organizational Unit:
Healthcare Robotics Lab

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Human-Robot Interaction Studies for Autonomous Mobile Manipulation for the Motor Impaired
    (Georgia Institute of Technology, 2009-03) Choi, Young Sang ; Anderson, Cressel D. ; Deyle, Travis ; Kemp, Charles C.
    We are developing an autonomous mobile assistive robot named El-E to help individuals with severe motor impairments by performing various object manipulation tasks such as fetching, transporting, placing, and delivering. El-E can autonomously approach a location specified by the user through an interface such as a standard laser pointer and pick up a nearby object. The initial target user population of the robot is individuals suffering from amyotrophic lateral sclerosis (ALS). ALS, also known as Lou Gehrig’s disease, is a progressive neuro-degenerative disease resulting in motor impairments throughout the entire body. Due to the severity and progressive nature of ALS, the results from developing robotic technologies to assist ALS patients could be applied to wider motor impaired populations. To accomplish successful development and real world application of assistive robot technology, we have to acquire familiarity with the needs and everyday living conditions of these individuals. We also believe the participation of prospective users throughout the design and development process is essential in improving the usability and accessibility of the robot for the target user population. To assess the needs of prospective users and to evaluate the technology being developed, we applied various methodologies of human studies including interviewing, photographing, and conducting controlled experiments. We present an overview of research from the Healthcare Robotics Lab related to patient needs assessment and human experiments with emphasis on the methods of human centered approach.
  • Item
    Hand It Over or Set It Down: A User Study of Object Delivery with an Assistive Mobile Manipulator
    (Georgia Institute of Technology, 2009) Choi, Young Sang ; Chen, Tiffany L. ; Jain, Advait ; Anderson, Cressel D. ; Glass, Jonathan D. ; Kemp, Charles C.
    Delivering an object to a user would be a generally useful capability for service robots. Within this paper, we look at this capability in the context of assistive object retrieval for motor-impaired users. We first describe a behavior-based system that enables our mobile robot EL-E to autonomously deliver an object to a motor-impaired user. We then present our evaluation of this system with 8 motor-impaired patients from the Emory ALS Center. As part of this study, we compared handing the object to the user (direct delivery) with placing the object on a nearby table (indirect delivery). We tested the robot delivering a cordless phone, a medicine bottle, and a TV remote, which were ranked as three of the top four most important objects for robotic delivery by ALS patients in a previous study. Overall, the robot successfully delivered these objects in 126 out of 144 trials (88%) with a success rate of 97% for indirect delivery and 78% for direct delivery. In an accompanying survey, participants showed high satisfaction with the robot with 4 people preferring direct delivery and 4 people preferring indirect delivery. Our results indicate that indirect delivery to a surface can be a robust and reliable delivery method with high user satisfaction, and that robust direct delivery will require methods that handle diverse postures and body types.
  • Item
    Laser Pointers and a Touch Screen: Intuitive Interfaces for Autonomous Mobile Manipulation for the Motor Impaired
    (Georgia Institute of Technology, 2008-10) Choi, Young Sang ; Anderson, Cressel D. ; Glass, Jonathan D. ; Kemp, Charles C.
    El-E (“Ellie”) is a prototype assistive robot designed to help people with severe motor impairments manipulate everyday objects. When given a 3D location, El-E can autonomously approach the location and pick up a nearby object. Based on interviews of patients with amyotrophic lateral sclerosis (ALS), we have developed and tested three distinct interfaces that enable a user to provide a 3D location to El-E and thereby select an object to be manipulated: an ear-mounted laser pointer, a hand-held laser pointer, and a touch screen interface. Within this paper, we present the results from a user study comparing these three user interfaces with a total of 134 trials involving eight patients with varying levels of impairment recruited from the Emory ALS Clinic. During this study, participants used the three interfaces to select everyday objects to be approached, grasped, and lifted off of the ground. The three interfaces enabled motor impaired users to command a robot to pick up an object with a 94.8% success rate overall after less than 10 minutes of learning to use each interface. On average, users selected objects 69% more quickly with the laser pointer interfaces than with the touch screen interface. We also found substantial variation in user preference. With respect to the Revised ALS Functional Rating Scale (ALSFRS-R), users with greater upper-limb mobility tended to prefer the hand-held laser pointer, while those with less upper-limb mobility tended to prefer the ear-mounted laser pointer. Despite the extra efficiency of the laser pointer interfaces, three patients preferred the touch screen interface, which has unique potential for manipulating remote objects out of the user’s line of sight. In summary, these results indicate that robots can enhance accessibility by supporting multiple interfaces. Furthermore, this work demonstrates that the communication of 3D locations during human-robot interaction can serve as a powerful abstraction barrier that supports distinct interfaces to assistive robots while using identical, underlying robotic functionality.
  • Item
    A List of Household Objects for Robotic Retrieval Prioritized by People with ALS (Version 092008)
    (Georgia Institute of Technology, 2008-09) Choi, Young Sang ; Deyle, Travis ; Kemp, Charles C.
    This technical report is designed to serve as a citable reference for the original prioritized object list that the Healthcare Robotics Lab at Georgia Tech released on its website in September of 2008. It is also expected to serve as the primary citable reference for the research associated with this list until the publication of a detailed, peer-reviewed paper. The original prioritized list of object classes resulted from a needs assessment involving 8 motor-impaired patients with amyotrophic lateral sclerosis (ALS) and targeted, in-person interviews of 15 motor-impaired ALS patients. All of these participants were drawn from the Emory ALS Center. The prioritized object list consists of 43 object classes ranked by how important the participants considered each class to be for retrieval by an assistive robot. We intend for this list to be used by researchers to inform the design and benchmarking of robotic systems, especially research related to autonomous mobile manipulation.