Organizational Unit:
Healthcare Robotics Lab

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Assistive Mobile Manipulation for Self-Care Tasks Around the Head
    (Georgia Institute of Technology, 2014) Hawkins, Kelsey P. ; Grice, Phillip M. ; Chen, Tiffany L. ; King, Chih-Hung ; Kemp, Charles C.
    Human-scale mobile robots with arms have the potential to assist people with a variety of tasks. We present a proof-of-concept system that has enabled a person with severe quadriplegia named Henry Evans to shave himself in his own home using a general purpose mobile manipulator (PR2 from Willow Garage). The robot primarily provides assistance by holding a tool (e.g., an electric shaver) at user-specified locations around the user’s head, while he/she moves his/her head against it. If the robot detects forces inappropriate for the task (e.g., shaving), it withdraws the tool. The robot also holds a mirror with its other arm, so that the user can see what he/she is doing. For all aspects of the task, the robot and the human work together. The robot uses a series of distinct semi-autonomous subsystems during the task to navigate to poses next to the wheelchair, attain initial arm configurations, register a 3D model of the person’s head, move the tool to coarse semantically-labeled tool poses (e.g, “Cheek”), and finely position the tool via incremental movements. Notably, while moving the tool near the user’s head, the robot uses an ellipsoidal coordinate system attached to the 3D head model. In addition to describing the complete robotic system, we report results from Henry Evans using it to shave both sides of his face while sitting in his wheelchair at home. He found the process to be long (54 minutes) and the interface unintuitive. Yet, he also found the system to be comfortable to use, felt safe while using it, was satisfied with it, and preferred it to a human caregiver.
  • Item
    An investigation of responses to robot-initiated touch in a nursing context
    (Georgia Institute of Technology, 2013-10) Chen, Tiffany L. ; King, Chih-Hung Aaron ; Thomaz, Andrea L. ; Kemp, Charles C.
    Physical human-robot interaction has the potential to be useful in a number of domains, but this will depend on how people respond to the robot’s actions. For some domains, such as healthcare, a robot is likely to initiate physical contact with a person’s body. In order to investigate how people respond to this type of interaction, we conducted an experiment with 56 people in which a robotic nurse autonomously touched and wiped each participant’s forearm. On average, participants had a favorable response to the first time the robot touched them. However, we found that the perceived intent of the robot significantly influenced people’s responses. If people believed that the robot intended to clean their arms, the participants tended to respond more favorably than if they believed the robot intended to comfort them, even though the robot’s manipulation behavior was the same. Our results suggest that roboticists should consider this social factor in addition to the mechanics of physical interaction. Surprisingly, we found that participants in our study responded less favorably when given a verbal warning prior to the robot’s actions. In addition to these main results, we present post-hoc analyses of participants’ galvanic skin responses (GSR), open-ended responses, attitudes towards robots, and responses to a second trial.
  • Item
    Robots for Humanity: A Case Study in Assistive Mobile Manipulation
    (Georgia Institute of Technology, 2013-03) Chen, Tiffany L. ; Ciocarlie, Matei ; Cousins, Steve ; Grice, Phillip M. ; Hawkins, Kelsey ; Hsiao, Kaijen ; Kemp, Charles C. ; King, Chih-Hung ; Lazewatsky, Daniel A. ; Nguyen, Hai ; Paepcke, Andreas ; Pantofaru, Caroline ; Smart, William D. ; Takayama, Leila
    Assistive mobile manipulators have the potential to one day serve as surrogates and helpers for people with disabilities, giving them the freedom to perform tasks such as scratching an itch, picking up a cup, or socializing with their families. This article introduces a collaborative project with the goal of putting assistive mobile manipulators into real homes to work with people with disabilities. Through a participatory design process in which users have been actively involved from day one, we are identifying and developing assistive capabilities for the PR2 robot. Our approach is to develop a diverse suite of open source software tools that blend the capabilities of the user and the robot. Within this article, we introduce the project, describe our progress, and discuss lessons we have learned.