Organizational Unit:
George W. Woodruff School of Mechanical Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Tweel (TM) technology tires for wheelchairs and instrumentation for measuring everyday wheeled mobility
    (Georgia Institute of Technology, 2007-04-04) Meruani, Azeem
    This thesis is focused on two aspects related to wheeled mobility: 1) Evaluating the impact of a new tire design on powered mobility, and 2) Instrumentation that permits better monitoring and assessment of wheeled mobility in everyday use. The Tweel technology tires developed by Michelin USA are comprised of an outer polyurethane ring supported by polyurethane fins instead of metal spokes, which allow the tire to deflect under pressure. As a wheelchair tire they offer a potential breakthrough as they have deflection properties similar to a pneumatic tire while maintaining the low maintenance of a solid foam-core tire. A study was conducted to compare the Tweel technology tires to standard solid foam-core tires for vibration transmission, traction and overall life span. The Tweel technology tires failed produce any significant difference in vibration transmitted to the user compared to solid foam-core tires. Additionally, the Tweel technology tires showed significant signs of deterioration after a month long field trial, thus indicating a short life span. However, Tweel technology tires provided better traction on both dry and wet concrete. Overall, Tweel technology tires have to be re-engineered to provide better damping properties, leading to lower vibrational levels transmitted to the user. The second section this thesis addressed the need to develop a methodology of measuring mobility in everyday usage. This section is part of a greater ongoing research project at CATEA (Center for Assistive Technology and Environmental Access) aimed at understanding everyday wheelchair usage. Methodology was developed to measure bouts of mobility that characterize wheelchair usage; which includes the number of starts, stops, turns and distance traveled through the day. Three different technologies which included, Accelerometer unit on the rim of the drive wheel, Gyro-Accelerometer unit on the frame of the chair and Reed switches, were tested. Testing included various criteria for accuracy, durability and compatibility for measuring bouts of everyday wheeled mobility. Although a single technology could not be used to measure all aspects of mobility, the Accelerometer unit on the rim met the design criteria for measuring starts stops and distance, while the Gyro-Accelerometer unit met the requirements for measuring turns.
  • Item
    Design of Wheelchair Seating Systems for Users with High-Tone Extensor Thrust
    (Georgia Institute of Technology, 2006-05-22) Kitchen, James Patrick
    High-tone extensor thrust is common to those with cerebral palsy and those suffering spinal cord injuries. It is a muscle-control phenomenon that causes the body to straighten spastically. One goal of this thesis is to design a dynamic seating system that moves with respect to the wheelchair frame, allowing the seat to move with the user during an extensor thrust and reduce forces. One unique challenge is that the seat needs to remain rigid during normal functional activities and only become dynamic when an involuntary thrust is detected. A second goal of this thesis is to design a control scheme that is able to differentiate between these two types of motion. These design goals are initially investigated with a hinged-seatback system, instrumented with sensors to allow for the detection of thrusts and to actively control seating components. A full seating system is then built to allow for full-body extensor thrusts, involving the seatback, seat bottom, and leg rest of the wheelchair. This system is analyzed for effectiveness of reducing forces on the body during an extensor thrust. Another serious problem for this segment of the population is pressure ulcers. These are caused by prolonged pressure on the skin from weight-bearing bony prominences. Various seating system configurations are known to help with pressure relief. The three standard configurations for a chair are tilt, recline, and standing. The final goal of this thesis is to measure and compare the effectiveness of these three methods for their ability to relieve pressure on the seat bottom. To accomplish this, a powered wheelchair with built-in capabilities for recline and standing is mounted to a tilting mechanism. Test subjects are used to experimentally compare the effectiveness of each method for pressure reduction using pressure mats on all weight-bearing surfaces. A 2D model is also developed and validated with the experimental results.