Organizational Unit:
George W. Woodruff School of Mechanical Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 194
  • Item
    Safe Humanoid Locomotion and Navigation: Challenges and Opportunities
    (Georgia Institute of Technology, 2023-11-29) Zhao, Ye
  • Item
    Practical Safety for Widespread Autonomy
    (Georgia Institute of Technology, 2023-11-29) Kousik, Shreyas
  • Item
    Characterization of lymphatic pump function in response to mechanical loading
    (Georgia Institute of Technology, 2014-04-28) Kornuta, Jeffrey Alan
    The lymphatic system is crucial for normal physiologic function, performing such basic functions as maintaining tissue fluid balance, trafficking immune cells, draining interstitial proteins, as well as transporting fat from the intestine to the blood. To perform these functions properly, downstream vessels (known as collecting lymphatics) actively pump like the heart to dynamically propel lymph from the interstitial spaces of the body to the blood vasculature. However, despite the fact that lymphatics are so important, there exists very little knowledge regarding the details of this active pumping. Specifically, it is known that external mechanical loading such as fluid shear stress and circumferential stress due to transmural pressure affect pumping response; however, anything other than simple, static relationships remain unknown. Because mechanical environment has been implicated in lymphatic diseases such as lymphedema, understanding these dynamic relationships between lymphatic pumping and mechanical loading during normal function are crucial to grasp before these pathologies can be unraveled. For this reason, this thesis describes several tools developed to study lymphatic function in response to the unique mechanical loads these vessels experience both in vitro and ex vivo. Moreover, this work investigates how shear stress sensitivity is affected by transmural pressure and how the presence of dynamic shear independently affects lymphatic contractile function.
  • Item
    Model predictive control with haptic feedback for robot manipulation in cluttered scenarios
    (Georgia Institute of Technology, 2013-11-18) Killpack, Marc Daniel
    Current robot manipulation and control paradigms have largely been developed for static or highly structured environments such as those common in factories. For most techniques in robot trajectory generation, such as heuristic-based geometric planning, this has led to putting a high cost on contact with the world. This approach and methodology can be prohibitive to robots operating in many unmodeled and dynamic environments. This dissertation presents work on using haptic based feedback (torque and tactile sensing) to formulate a controller for robot manipulation in clutter. We define “clutter” as any environment in which we expect the robot to make both incidental and purposeful contact while maneuvering and manipulating. The controllers developed in this dissertation take the form of single or multi-time step Model Predictive Control (a form of optimal control which incorporates feedback) which attempts to regulate contact forces at multiple locations on a robot arm while reaching to a goal. The results and conclusions in this dissertation are based on extensive testing in simulation (tens of thousands of trials) and testing in realistic scenarios with real robots incorporating tactile sensing. The approach is novel in the sense that it allows contact and explicitly incorporate the contact and predictive model of the robot arm in calculating control effort at every time step. The expected broader impact of this research is progress towards a new foundation of reactive feedback controllers that will include a higher likelihood of success in many constrained and dynamic scenarios such as reaching into containers without line of sight, maneuvering in cluttered search and rescue situations or working with unpredictable human co-workers.
  • Item
    Collective dynamics and control of a fleet of heterogeneous marine vehicles
    (Georgia Institute of Technology, 2013-11-08) Wang, Chuanfeng
    Cooperative control enables combinations of sensor data from multiple autonomous underwater vehicles (AUVs) so that multiple AUVs can perform smarter behaviors than a single AUV. In addition, in some situations, a human-driven underwater vehicle (HUV) and a group of AUVs need to collaborate and preform formation behaviors. However, the collective dynamics of a fleet of heterogeneous underwater vehicles are more complex than the non-trivial single vehicle dynamics, resulting in challenges in analyzing the formation behaviors of a fleet of heterogeneous underwater vehicles. The research addressed in this dissertation investigates the collective dynamics and control of a fleet of heterogeneous underwater vehicles, including multi-AUV systems and systems comprised of an HUV and a group of AUVs (human-AUV systems). This investigation requires a mathematical motion model of an underwater vehicle. This dissertation presents a review of a six-degree-of-freedom (6DOF) motion model of a single AUV and proposes a method of identifying all parameters in the model based on computational fluid dynamics (CFD) calculations. Using the method, we build a 6DOF model of the EcoMapper and validate the model by field experiments. Based upon a generic 6DOF AUV model, we study the collective dynamics of a multi-AUV system and develop a method of decomposing the collective dynamics. After the collective dynamics decomposition, we propose a method of achieving orientation control for each AUV and formation control for the multi-AUV system. We extend the results and propose a cooperative control for a human-AUV system so that an HUV and a group of AUVs will form a desired formation while moving along a desired trajectory as a team. For the post-mission stage, we present a method of analyzing AUV survey data and apply this method to AUV measurement data collected from our field experiments carried out in Grand Isle, Louisiana in 2011, where AUVs were used to survey a lagoon, acquire bathymetric data, and measure the concentration of reminiscent crude oil in the water of the lagoon after the BP Deepwater Horizon oil spill in the Gulf of Mexico in 2010.
  • Item
    Control of human-operated machinery with flexible dynamics
    (Georgia Institute of Technology, 2013-10-28) Maleki, Ehsan A.
    Heavy-lifting machines such as cranes are widely used at ports, construction sites, and manufacturing plants in a variety of material-transporting applications. However, cranes possess inherent flexible dynamics that make fast and precise operation challenging. Most cranes are driven by human operators, which adds another element of complexity. The goal of this thesis is to develop controllers that allow human operators to easily and efficiently control machines with flexible dynamics. To improve the ease of human operation of these machines, various control structures are developed and their effectiveness in aiding the operator are evaluated. Cranes are commonly used to swing wrecking balls that demolish unwanted structures. To aid the operator in such tasks, swing-amplifying controllers are designed and their performance are evaluated through simulations and experiments with real operators. To make maneuvering of these machines in material-transporting operations easier, input-shaping control is used to reduce oscillation induced by operator commands. In the presence of external disturbances, input shaping is combined with a low-authority feedback controller to eliminate unwanted oscillations, while maintaining the human operator as the primary controller of the machine. The performance and robustness of the proposed controllers are thoroughly examined via numerical simulations and a series of experiments and operator studies on a small-scale mobile boom crane and a two-ton dual-hoist bridge crane.
  • Item
    Modeling cellular actuator arrays
    (Georgia Institute of Technology, 2013-08-20) MacNair, David Luke
    This work explores the representations and mathematical modeling of biologically-inspired robotic muscles called Cellular Actuator Arrays. These actuator arrays are made of many small interconnected actuation units which work together to provide force, displacement, robustness and other properties beyond the original actuator's capability. The arrays can also exhibit properties generally associated with biological muscle and can thus provide test bed for research into the interrelated nature of the nervous system and muscles, kinematics/dynamics experiments to understand balance and synergies, and building full-strength, safe muscles for prosthesis, rehabilitation, human force amplification, and humanoid robotics. This thesis focuses on the mathematical tools needed bridge the gap between the conceptual idea of the cellular actuator array and the engineering design processes needed to build physical robotic muscles. The work explores the representation and notation needed to express complex actuator array typologies, the mathematical modeling needed to represent the complex dynamics of the arrays, and properties to guide the selection of arrays for engineering purposes. The approach is designed to aid automation and simulation of actuator arrays and provide an intuitive base for future controls and physiology work. The work is validated through numerical results using MatLab's SimMechanics dynamic modeling system and with three physical actuator arrays built using solenoids and shape memory alloy actuators.
  • Item
    The role of functional surfaces in the locomotion of snakes
    (Georgia Institute of Technology, 2013-08-02) Marvi, Hamidreza
    Snakes are one of the world’s most versatile organisms, at ease slithering through rubble or climbing vertical tree trunks. Their adaptations for conquering complex terrain thus serve naturally as inspirations for search and rescue robotics. In a combined experimental and theoretical investigation, we elucidate the propulsion mechanisms of snakes on both hard and granular substrates. The focus of this study is on physics of snake interactions with its environment. Snakes use one of several modes of locomotion, such as slithering on flat surfaces, sidewinding on sand, or accordion-like concertina and worm-like rectilinear motion to traverse crevices. We present a series of experiments and supporting mathematical models demonstrating how snakes optimize their speed and efficiency by adjusting their frictional properties as a function of position and time. Particular attention is paid to a novel paradigm in locomotion, a snake’s active control of its scales, which enables it to modify its frictional interactions with the ground. We use this discovery to build bio-inspired limbless robots that have improved sensitivity to the current state of the art: Scalybot has individually controlled sets of belly scales enabling it to climb slopes of 55 degrees. These findings will result in developing new functional materials and control algorithms that will guide roboticists as they endeavor towards building more effective all-terrain search and rescue robots.
  • Item
    Robust state estimation for the control of flexible robotic manipulators
    (Georgia Institute of Technology, 2013-07-16) Post, Brian Karl
    In this thesis, a novel robust estimation strategy for observing the system state variables of robotic manipulators with distributed flexibility is established. Motivation for the derived approach stems from the observation that lightweight, high speed, and large workspace robotic manipulators often suffer performance degradation because of inherent structural compliance. This flexibility often results in persistent residual vibration, which must be damped before useful work can resume. Inherent flexibility in robotic manipulators, then, increases cycle times and shortens the operational lives of the robots. Traditional compensation techniques, those which are commonly used for the control of rigid manipulators, can only approach a fraction of the open-loop system bandwidth without inducing significant excitation of the resonant dynamics. To improve the performance of these systems, the structural flexibility cannot simply be ignored, as it is when the links are significantly stiff and approximate rigid bodies. One thus needs a model to design a suitable compensator for the vibration, but any model developed to correct this problem will contain parametric error. And in the case of very lightly damped systems, like flexible robotic manipulators, this error can lead to instability of the control system for even small errors in system parameters. This work presents a systematic solution for the problem of robust state estimation for flexible manipulators in the presence of parametric modeling error. The solution includes: 1) a modeling strategy, 2) sensor selection and placement, and 3) a novel, multiple model estimator. Modeling of the FLASHMan flexible gantry manipulator is accomplished using a developed hybrid transfer matrix / assumed modes method (TMM/AMM) approach to determine an accurate low-order state space representation of the system dynamics. This model is utilized in a genetic algorithm optimization in determining the placement of MEMs accelerometers for robust estimation and observability of the system’s flexible state variables. The initial estimation method applied to the task of determining robust state estimates under conditions of parametric modeling error was of a sliding mode observer type. Evaluation of the method through analysis, simulations and experiments showed that the state estimates produced were inadequate. This led to the development of a novel, multiple model adaptive estimator. This estimator utilizes a bank of similarly designed sub-estimators and a selection algorithm to choose the true value from a given set of possible system parameter values as well as the correct state vector estimate. Simulation and experimental results are presented which demonstrate the applicability and effectiveness of the derived method for the task of state variable estimation for flexible robotic manipulators.
  • Item
    Multi-camera uncalibrated visual servoing
    (Georgia Institute of Technology, 2013-07-02) Marshall, Matthew Q.
    Uncalibrated visual servoing (VS) can improve robot performance without needing camera and robot parameters. Multiple cameras improve uncalibrated VS precision, but no works exist simultaneously using more than two cameras. The first data for uncalibrated VS simultaneously using more than two cameras are presented. VS performance is also compared for two different camera models: a high-cost camera and a low-cost camera, the difference being image noise magnitude and focal length. A Kalman filter based control law for uncalibrated VS is introduced and shown to be stable under the assumptions that robot joint level servo control can reach commanded joint offsets and that the servoing path goes through at least one full column rank robot configuration. Adaptive filtering by a covariance matching technique is applied to achieve automatic camera weighting, prioritizing the best available data. A decentralized sensor fusion architecture is utilized to assure continuous servoing with camera occlusion. The decentralized adaptive Kalman filter (DAKF) control law is compared to a classical method, Gauss-Newton, via simulation and experimentation. Numerical results show that DAKF can improve average tracking error for moving targets and convergence time to static targets. DAKF reduces system sensitivity to noise and poor camera placement, yielding smaller outliers than Gauss-Newton. The DAKF system improves visual servoing performance, simplicity, and reliability.