Organizational Unit:
Daniel Guggenheim School of Aerospace Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Flight-Test Results of Autonomous Airplane Transitions Between Steady-Level and Hovering Flight
    (Georgia Institute of Technology, 2008-03) Johnson, Eric N. ; Wu, Allen D. ; Neidhoefer, James C. ; Kannan, Suresh K. ; Turbe, Michael A.
    Linear systems can be used to adequately model and control an aircraft in either ideal steady-level flight or in ideal hovering flight. However, constructing a single unified system capable of adequately modeling or controlling an airplane in steady-level flight and in hovering flight, as well as during the highly nonlinear transitions between the two, requires the use of more complex systems, such as scheduled-linear, nonlinear, or stable adaptive systems. This paper discusses the use of dynamic inversion with real-time neural network adaptation as a means to provide a single adaptive controller capable of controlling a fixed-wing unmanned aircraft system in all three flight phases: steady-level flight, hovering flight, and the transitions between them. Having a single controller that can achieve and transition between steady-level and hovering flight allows utilization of the entire low-speed flight envelope, even beyond stall conditions. This method is applied to the GTEdge, an eight-foot wingspan, fixed-wing unmanned aircraft system that has been fully instrumented for autonomous flight. This paper presents data from actual flight-test experiments in which the airplane transitions from high-speed, steady-level flight into a hovering condition and then back again.
  • Item
    Real-Time Vision-Based Relative Aircraft Navigation
    (Georgia Institute of Technology, 2007-03) Johnson, Eric N. ; Calise, Anthony J. ; Watanabe, Yoko ; Ha, Jin-Cheol ; Neidhoefer, James C.
    This paper describes two vision-based techniques for the navigation of an aircraft relative to an airborne target using only information from a single camera fixed to the aircraft. These techniques are motivated by problems such as "see and avoid", pursuit, formation flying, and in-air refueling. By applying an Extended Kalman Filter for relative state estimation, both the velocity and position of the aircraft relative to the target can be estimated. While relative states such as bearing can be estimated fairly easily, estimating the range to the target is more difficult because it requires achieving valid depth perception with a single camera. The two techniques presented here offer distinct solutions to this problem. The first technique, Center Only Relative State Estimation, uses optimal control to generate an optimal (sinusoidal) trajectory to a desired location relative to the target that results in accurate range-to-target estimates while making minimal demands on the image processing system.The second technique, Subtended Angle Relative State Estimation, uses more rigorous image processing to arrive at a valid range estimate without requiring the aircraft to follow a prescribed path. Simulation results indicate that both methods yield range estimates of comparable accuracy while placing different demands on the aircraft and its systems.
  • Item
    A Compact Guidance, Navigation, and Control System for Unmanned Aerial Vehicles
    (Georgia Institute of Technology, 2006-05) Christophersen, Henrik B. ; Pickell, R. Wayne ; Neidhoefer, James C. ; Koller, Adrian A. ; Kannan, Suresh K. ; Johnson, Eric N.
    The Flight Control System 20 (FCS20) is a compact, self-contained Guidance, Navigation, and Control system that has recently been developed to enable advanced autonomous behavior in a wide range of Unmanned Aerial Vehicles (UAVs). The FCS20 uses a floating point Digital Signal Processor (DSP) for high level serial processing, a Field Programmable Gate Array (FPGA) for low level parallel processing, and GPS and Micro Electro Mechanical Systems (MEMS) sensors. In addition to guidance, navigation, and control functions, the FCS20 is capable of supporting advanced algorithms such as automated reasoning, artificial vision, and multi-vehicle interaction. The unique contribution of this paper is that it gives a complete overview of the FCS20 GN&C system, including computing, communications, and information aspects. Computing aspects of the FCS20 include details about the design process, hardware components, and board configurations, and specifications. Communications aspects of the FCS20 include descriptions of internal and external data flow. The information section describes the FCS20 Operating System (OS), the Support Vehicle Interface Library (SVIL) software, the navigation Extended Kalman Filter, and the neural network based adaptive controller. Finally, simulation-based results as well as actual flight test results that demonstrate the operation of the guidance, navigation, and control algorithms on a real Unmanned Aerial Vehicle (UAV) are presented.