Real-Time Vision-Based Relative Aircraft Navigation

Loading...
Thumbnail Image
Author(s)
Calise, Anthony J.
Watanabe, Yoko
Ha, Jin-Cheol
Neidhoefer, James C.
Advisor(s)
Editor(s)
Associated Organization(s)
Organizational Unit
Daniel Guggenheim School of Aerospace Engineering
The Daniel Guggenheim School of Aeronautics was established in 1931, with a name change in 1962 to the School of Aerospace Engineering
Organizational Unit
Organizational Unit
Series
Supplementary to:
Abstract
This paper describes two vision-based techniques for the navigation of an aircraft relative to an airborne target using only information from a single camera fixed to the aircraft. These techniques are motivated by problems such as "see and avoid", pursuit, formation flying, and in-air refueling. By applying an Extended Kalman Filter for relative state estimation, both the velocity and position of the aircraft relative to the target can be estimated. While relative states such as bearing can be estimated fairly easily, estimating the range to the target is more difficult because it requires achieving valid depth perception with a single camera. The two techniques presented here offer distinct solutions to this problem. The first technique, Center Only Relative State Estimation, uses optimal control to generate an optimal (sinusoidal) trajectory to a desired location relative to the target that results in accurate range-to-target estimates while making minimal demands on the image processing system.The second technique, Subtended Angle Relative State Estimation, uses more rigorous image processing to arrive at a valid range estimate without requiring the aircraft to follow a prescribed path. Simulation results indicate that both methods yield range estimates of comparable accuracy while placing different demands on the aircraft and its systems.
Sponsor
Date
2007-03
Extent
Resource Type
Text
Resource Subtype
Article
Rights Statement
Rights URI