Organizational Unit:
Daniel Guggenheim School of Aerospace Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 5 of 5
  • Item
    Single-operator Multi-vehicle Human-Automation Interface Study dataset
    (Georgia Institute of Technology, 2015-05) Feigh, Karen M. ; Johnson, Eric N. ; Christmann, Hans Claus
    With the achievement of autonomous flight for small unmanned aircraft, currently ongoing research is expanding the capabilities of systems utilizing such vehicles for various tasks. This allows shifting the research focus from the individual systems to task execution benefits resulting from interaction and collaboration of several aircraft. Given that some available high-fidelity simulations do not yet support multi-vehicle scenarios, a multi-vehicle framework has been introduced which allows several individual single-vehicle systems to be combined into a larger multi-vehicle scenario with little to no special requirements towards the single-vehicle systems. The created multi-vehicle system offers real-time software-in-the-loop simulations of vehicle teams across multiple hosts and enables a single operator to command and control a several unmanned aircraft beyond line-of-sight in geometrically correct two-dimensional cluttered environments through a multi-hop network of data relaying intermediaries. The related dissertation by Christmann presents the main aspects of the developed system: the underlying software framework and application programming interface, the utilized inter- and intrasystem communication architecture, the graphical user interface, and implemented algorithms and operator aid heuristics to support the management and placement of the vehicles.The effectiveness of the aid heuristics is validated through a human subject study which showed that the provided operator support systems significantly improve the operators' performance in a simulated first responder scenario. This dataset contains the collected data of that human subject study.
  • Item
    Feasibility Study to Determine the Economic and Operational Benefits of Utilizing Unmanned Aerial Vehicles (UAVs)
    (Georgia Institute of Technology, 2014-05-06) Irizarry, Javier ; Johnson, Eric N.
    This project explored the feasibility of using Unmanned Aerial Systems (UASs) in Georgia Department of Transportation (GDOT) operations. The research team conducted 24 interviews with personnel in four GDOT divisions. Interviews focused on (1) the basic goals of the operators in each division, (2) their major decisions for accomplishing those goals, and (3) the information requirements for each decision. Following an interview validation process, a set of UASs design characteristics that fulfill user requirements of each previously identified division was developed. A “House of Quality” viewgraph was chosen to capture the relationships between GDOT tasks and potential UAS aiding those operations. As a result, five reference systems are proposed. The UAS was broken into three components: vehicle, control station, and system. This study introduces a variety of UAS applications in traffic management, transportation and construction disciplines related to DOTs, such as the ability to get real time, digital photographs/videos of traffic scenes, providing a "bird’s eye view" that was previously only available with the assistance of a manned aircraft, integrating aerial data into GDOT drawing software programs, and dealing with restricted or complicated access issues when terrain, area, or the investigated object make it difficult for GDOT personnel to conduct a task. The results of this study could lead to further research on design, development, and field-testing of UAVs for applications identified as beneficial to the Department.
  • Item
    A Comparison of Automatic Nap-of-the-Earth Guidance Strategies for Helicopters
    (Georgia Institute of Technology, 2014-05) Johnson, Eric N. ; Mooney, John G.
    This paper describes updated results from a partnership between the Sikorsky Aircraft Corporation and the Georgia Institute of Technology to develop, improve, and flight test a sensor, guidance, navigation, control, and real-time flight path optimization system to support high performance Nap-of-the-Earth (NOE) helicopter flight.
  • Item
    Development and Evaluation of an Automated Path Planning Aid
    (Georgia Institute of Technology., 2012-11) Watts, Robert ; Christmann, Hans Claus ; Johnson, Eric N. ; Feigh, Karen M. ; Tsiotras, Panagiotis
    Handling en route emergencies in modern transport aircraft through adequate teamwork between the pilot, the crew and the aircraft’s automation systems is an ongoing and active field of research. An automated path planning aid tool can assist pilots with the tasks of selecting a convenient landing site and developing a safe path to land at this site in the event of an onboard emergency. This paper highlights the pilot evaluation results of a human factors study as part of such a proposed automated planning aid. Focusing on the interactions between the pilot and the automated planning aid, the presented results suggest that a particular implementation of the pilot aid interface, which uses a simple dial to sort the most promising landing sites, was effective. This selectable sorting capability, motivated by the anticipated cognitive mode of the pilot crew, improved the quality of the selected site for the majority of the cases tested. Although the presented approach increased the average time required for the selection of an alternate landing site, it decreased the time to complete the task in the case of emergencies unfamiliar to the pilot crew.
  • Item
    Advanced methods for intelligent flight guidance and planning in support of pilot decision making
    (Georgia Institute of Technology, 2012-03-01) Tsiotras, Panagiotis ; Johnson, Eric N.