Organizational Unit:
Daniel Guggenheim School of Aerospace Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 14
  • Item
    An IPPD approach providing a modular framework to closing the capability gap and preparing a 21st century workforce
    (Georgia Institute of Technology, 2014-04-09) Zender, Fabian
    The United States are facing a critical workforce challenge, even though current unemployment is around 6.7%, employers find it difficult to find applicants that can satisfy all job requirements. This problem is especially pronounced in the manufacturing sector where a critical skills gap has developed, a problem that is exasperated by workforce demographics. A large number of employees across the various manufacturing sub-disciplines are eligible to retire now or in the near future. This gray tsunami requires swift action as well as long lasting change resulting in a workforce pipeline that can provide Science, Technology, Engineering, and Mathematics (STEM) majors in sufficient quantity and quality to satisfy not only the needs of STEM industries, but also of those companies outside of the STEM sector that hire STEM graduates. The research shown here will identify overt symptoms describing the capability gap, will identify specific skills describing the gap, educational causes why the gaps has not yet been addressed or is difficult to address, and lastly educational remedies that can contribute to closing the capability gap. A significant body of literature focusing on engineering in higher education has been evaluated and findings will be presented here. A multidisciplinary, collaborative capstone program will be described which implements some of the findings from this study in an active learning environment for students working on distributed teams across the US. Preliminary findings regarding the impact of these measures on the quantity of engineers to the US economy will be evaluated.
  • Item
    A plm implementation for aerospace systems engineering-conceptual rotorcraft design
    (Georgia Institute of Technology, 2009-04-08) Hart, Peter Bartholomew
    The thesis will discuss the Systems Engineering phase of an original Conceptual Design Engineering Methodology for Aerospace Engineering-Vehicle Synthesis. This iterative phase is shown to benefit from digitization of Integrated Product&Process Design (IPPD) activities, through the application of Product Lifecycle Management (PLM) technologies. Requirements analysis through the use of Quality Function Deployment (QFD) and 7 MaP tools is explored as an illustration. A "Requirements Data Manager" (RDM) is used to show the ability to reduce the time and cost to design for both new and legacy/derivative designs. Here the COTS tool Teamcenter Systems Engineering (TCSE) is used as the RDM. The utility of the new methodology is explored through consideration of a legacy RFP based vehicle design proposal and associated aerospace engineering. The 2001 American Helicopter Society (AHS) 18th Student Design Competition RFP is considered as a starting point for the Systems Engineering phase. A Conceptual Design Engineering activity was conducted in 2000/2001 by Graduate students (including the author) in Rotorcraft Engineering at the Daniel Guggenheim School of Aerospace Engineering at the Georgia Institute of Technology, Atlanta GA. This resulted in the "Kingfisher" vehicle design, an advanced search and rescue rotorcraft capable of performing the "Perfect Storm" mission, from the movie of the same name. The associated requirements, architectures, and work breakdown structure data sets for the Kingfisher are used to relate the capabilities of the proposed Integrated Digital Environment (IDE). The IDE is discussed as a repository for legacy knowledge capture, management, and design template creation. A primary thesis theme is to promote the automation of the up-front conceptual definition of complex systems, specifically aerospace vehicles, while anticipating downstream preliminary and full spectrum lifecycle design activities. The thesis forms a basis for additional discussions of PLM tool integration across the engineering, manufacturing, MRO and EOL lifecycle phases to support business management processes.
  • Item
    Design Methodology for Developing Concept Independent Rotorcraft Analysis and Design Software
    (Georgia Institute of Technology, 2007-11-16) Davis, Joseph Hutson
    Throughout the evolution of rotorcraft design, great advancements have been made in developing performance analysis and sizing tools to assist designers during the preliminary and detailed design phases. However, very few tools exist to assist designers during the conceptual design phase. Most performance analysis tools are very discipline or concept specific, and many are far too cumbersome to use for comparing vastly different concepts in a timely manner. Consequently, many conceptual decisions must be made qualitatively. A need exists to develop a single software tool which is capable of modeling any type of feasible rotorcraft concept using different levels of detail and accuracy in order to assist in the decision making throughout the conceptual and preliminary design phases. This software should have a very intuitive and configurable user interface which allows users of different backgrounds and experience levels to use it, while providing a broad capability of modeling traditional, innovative, and highly complex design concepts. As an illustration, a newly developed Concept Independent Rotorcraft Analysis and Design Software (CIRADS) will be presented to prove the applicability of such software tools. CIRADS is an object oriented application with a Graphical User Interface (GUI) for specifying mission requirements, aircraft configurations, weight component breakdowns, engine performance, and airfoil characteristics. Input files from the GUI are assembled to form analysis and design project files which are processed using algorithms developed in MATLAB but compiled as a stand alone executable and imbedded in the GUI. The performance calculations are based primarily upon a modified momentum theory with empirical correction factors and simplified blade stall models. The ratio of fuel (RF) sizing methodology is used to size the aircraft based on the mission requirements specified by the user. The results of the analysis/design simulations are then displayed in tables and Text Fields in the GUI. The intent for CIRADS is to become a primary conceptual sizing and performance estimation tool for the Georgia Institute of Technology rotorcraft design teams for use in the annual American Helicopter Society Rotorcraft Design Competition.
  • Item
    Preliminary Turboshaft Engine Design Methodology for Rotorcraft Applications
    (Georgia Institute of Technology, 2006-11-20) Suhr, Stephen Andrew
    In the development of modern rotorcraft vehicles, many unique challenges emerge due to the highly coupled nature of individual rotorcraft design disciplines therefore, the use of an integrated product and process development (IPPD) methodology is necessary to drive the design solution. Through the use of parallel design and analysis, this approach achieves the design synthesis of numerous product and process requirements that is essential in ultimately satisfying the customers demands. Over the past twenty years, Georgia Techs Center for Excellence in Rotorcraft Technology (CERT) has continuously focused on refining this IPPD approach within its rotorcraft design course by using the annual American Helicopter Society (AHS) Student Design Competition as the design requirement catalyst. Despite this extensive experience, however, the documentation of this preliminary rotorcraft design approach has become out of date or insufficient in addressing a modern IPPD methodology. In no design discipline is this need for updated documentation more prevalent than in propulsion system design, specifically in the area of gas turbine technology. From an academic perspective, the vast majority of current propulsion system design resources are focused on fixed-wing applications with very limited reference to the use of turboshaft engines. Additionally, most rotorcraft design resources are centered on aerodynamic considerations and largely overlook propulsion system integration. This research effort is aimed at bridging this information gap by developing a preliminary turboshaft engine design methodology that is applicable to a wide range of potential rotorcraft propulsion system design problems. The preliminary engine design process begins by defining the design space through analysis of the initial performance and mission requirements dictated in a given request for proposal (RFP). Engine cycle selection is then completed using tools such as GasTurb and the NASA Engine Performance Program (NEPP) to conduct thorough parametric and engine performance analysis. Basic engine component design considerations are highlighted to facilitate configuration trade studies and to generate more detailed engine performance and geometric data. Throughout this approach, a comprehensive engine design case study is incorporated based on a two-place, turbine training helicopter known as the Georgia Tech Generic Helicopter (GTGH). This example serves as a consistent propulsion system design reference highlighting the level of integration and detail required for each step of the preliminary turboshaft engine design methodology.
  • Item
    Drive System Design Methodology for a Single Main Rotor Helicopter
    (Georgia Institute of Technology, 2005-11-21) Bellocchio, Andrew Thomas
    The transformation of Joint forces to be lighter, more lethal, and capable of deploying from multiple dispersed locations free of prepared landing zones requires a dedicated heavy lift VTOL aircraft capable of rapidly delivering large payloads, such as the 20 to 26 ton Future Combat System, at extended ranges in demanding terrain and environmental conditions. Current estimates for a single main rotor configuration place the design weight over 130,000 pounds with an installed power of approximately 30,000 horsepower. Helicopter drive systems capable of delivering torque of this magnitude succeeded in the Russian Mi-26 helicopters split-torque design and the Boeing VERTOL Heavy Lift Helicopter (HLH) prototypes traditional multi-stage planetary design. The square-cube law and historical trends show that the transmission stage weight varies approximately as the two-thirds power of torque; hence, as the size and weight of the vehicle grows, the transmissions weight becomes an ever-increasing portion of total gross weight. At this scale, optimal gearbox configuration and component design holds great potential to save significant weight and reduce the required installed power. The drive system design methodology creates a set of integrated tools to estimate system weight and rapidly model the preliminary design of drives system components. Tools are provided for gearbox weight estimation and efficiency, gearing, shafting, and cooling. Within the same architecture, the designer may add similar tools to model subcomponents such as support bearings, gearbox housing, freewheeling units, and rotor brakes. Measuring the relationships between key design variables and system performance metrics reveals insight into the performance and behavior of a heavy lift drive system. A parametric study of select design variables is accomplished through an intelligent Design of Experiments that utilizes Response Surface Methodology to build a multivariate regression weight model. The model permits visualization of the design space and assists in optimization of the drive system preliminary design. This methodology is applied to both the Boeing HLH and the Russian Mi-26 main gearboxes. This study applies the drive system design methodology to compare the Mi-26 split-torque gearbox over the Boeing HLH multi-stage planetary gearbox in a single main rotor heavy lift helicopter.
  • Item
    A Thermodynamics Based Model for Predicting Piston Engine Performance for Use in Aviation Vehicle Design
    (Georgia Institute of Technology, 2004-04-02) Highley, Justin L.
    Advances in piston engine technology, coupled with high costs of turbine engines have led many general aviation manufacturers to explore the use of piston engines in their smaller vehicles. However, very few engine models are available to analyze piston engine performance. Consequently, designers using vehicle synthesis programs are unable to accurately predict vehicle performance when piston engines are used. This thesis documents the development of a comprehensive, thermodynamics based performance model that meets that need. The first part of this thesis details the basics of piston engine operation, including component geometry and the four stroke engine cycle. Next, the author analyzes the critical components of engine performance, including engine work and power. In developing the engine performance model the Ideal Engine Cycles are discussed. The cold air and fuel-air working fluid models are discussed, along with the types of combustion models, including the Otto Cycle, Diesel Cycle, and the Dual Cycle. Two performance models are generated using the Constant Volume Ideal Engine Cycle: an Ideal Gas Standard Cycle, and a Fuel-Air Cycle. The Ideal Gas Standard Cycle is useful for parametric analysis but lacks the accuracy required for performance calculations. The Fuel-Air Cycle, however, more accurately models the engine cycle and is selected as the basis for the computer program. In developing the computer program the thermodynamic charts used in the Fuel-Air Cycle calculations must be reproduced. To accomplish this, the NASA Chemical Equilibrium Application (CEA) program is integrated into a parent VBA based computer code to provide thermodynamic state point data. Finally, the computer program is correlated to the performance of an existing aviation engine to validate the model.
  • Item
    A methodology for analyzing availability improvements for army rotorcraft
    (Georgia Institute of Technology, 2003-12-01) Melnyk, Richard V.
  • Item
    Challenges and methodology in the design of a vertical lift aerial vehicle for use on the planet Mars
    (Georgia Institute of Technology, 2001-05) O'Brien, Patrick Charles
  • Item
    Application of concurrent engineering methods to the design of an autonomous aerial robot
    (Georgia Institute of Technology, 1991-12) Ingalls, Stephen A.