Title:
Preliminary Turboshaft Engine Design Methodology for Rotorcraft Applications

Thumbnail Image
Author(s)
Suhr, Stephen Andrew
Authors
Advisor(s)
Schrage, Daniel P.
Advisor(s)
Editor(s)
Associated Organization(s)
Supplementary to
Abstract
In the development of modern rotorcraft vehicles, many unique challenges emerge due to the highly coupled nature of individual rotorcraft design disciplines therefore, the use of an integrated product and process development (IPPD) methodology is necessary to drive the design solution. Through the use of parallel design and analysis, this approach achieves the design synthesis of numerous product and process requirements that is essential in ultimately satisfying the customers demands. Over the past twenty years, Georgia Techs Center for Excellence in Rotorcraft Technology (CERT) has continuously focused on refining this IPPD approach within its rotorcraft design course by using the annual American Helicopter Society (AHS) Student Design Competition as the design requirement catalyst. Despite this extensive experience, however, the documentation of this preliminary rotorcraft design approach has become out of date or insufficient in addressing a modern IPPD methodology. In no design discipline is this need for updated documentation more prevalent than in propulsion system design, specifically in the area of gas turbine technology. From an academic perspective, the vast majority of current propulsion system design resources are focused on fixed-wing applications with very limited reference to the use of turboshaft engines. Additionally, most rotorcraft design resources are centered on aerodynamic considerations and largely overlook propulsion system integration. This research effort is aimed at bridging this information gap by developing a preliminary turboshaft engine design methodology that is applicable to a wide range of potential rotorcraft propulsion system design problems. The preliminary engine design process begins by defining the design space through analysis of the initial performance and mission requirements dictated in a given request for proposal (RFP). Engine cycle selection is then completed using tools such as GasTurb and the NASA Engine Performance Program (NEPP) to conduct thorough parametric and engine performance analysis. Basic engine component design considerations are highlighted to facilitate configuration trade studies and to generate more detailed engine performance and geometric data. Throughout this approach, a comprehensive engine design case study is incorporated based on a two-place, turbine training helicopter known as the Georgia Tech Generic Helicopter (GTGH). This example serves as a consistent propulsion system design reference highlighting the level of integration and detail required for each step of the preliminary turboshaft engine design methodology.
Sponsor
Date Issued
2006-11-20
Extent
3479171 bytes
36113 bytes
Resource Type
Text
Resource Subtype
Thesis
Rights Statement
Rights URI