Organizational Unit:
Aerospace Design Group

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Real-Time Vision-Based Relative Aircraft Navigation
    (Georgia Institute of Technology, 2007-03) Johnson, Eric N. ; Calise, Anthony J. ; Watanabe, Yoko ; Ha, Jin-Cheol ; Neidhoefer, James C.
    This paper describes two vision-based techniques for the navigation of an aircraft relative to an airborne target using only information from a single camera fixed to the aircraft. These techniques are motivated by problems such as "see and avoid", pursuit, formation flying, and in-air refueling. By applying an Extended Kalman Filter for relative state estimation, both the velocity and position of the aircraft relative to the target can be estimated. While relative states such as bearing can be estimated fairly easily, estimating the range to the target is more difficult because it requires achieving valid depth perception with a single camera. The two techniques presented here offer distinct solutions to this problem. The first technique, Center Only Relative State Estimation, uses optimal control to generate an optimal (sinusoidal) trajectory to a desired location relative to the target that results in accurate range-to-target estimates while making minimal demands on the image processing system.The second technique, Subtended Angle Relative State Estimation, uses more rigorous image processing to arrive at a valid range estimate without requiring the aircraft to follow a prescribed path. Simulation results indicate that both methods yield range estimates of comparable accuracy while placing different demands on the aircraft and its systems.
  • Item
    Adaptive Guidance and Control for Hypersonic Vehicles
    (Georgia Institute of Technology, 2006-05) Johnson, Eric N. ; Calise, Anthony J. ; Curry, Michael D.
    Guidance and control technology is recognized as an important aspect of the military, civil, and commercial goal of reliable, low-cost, aircraft-type operations into space. Here, several guidance and control methods are extended to enable integration into a single fully adaptive guidance and control system that offers a high degree of mission flexibility, fault tolerance, and autonomy. This paper summarizes the guidance and control system and several research issues related to use of adaptive guidance and control in reusable launch vehicles. Results that demonstrate the ability of the integrated system to plan and fly abort trajectories are also presented.
  • Item
    Limited Authority Adaptive Flight Control for Reusable Launch Vehicles
    (Georgia Institute of Technology, 2003-11) Johnson, Eric N. ; Calise, Anthony J.
    In the application of adaptive flight control, significant issues arise due to limitations in the plant inputs, such as actuator displacement limits, actuator rate limits, linear input dynamics, and time delay. A method is introduced that allows an adaptive law to be designed for the system without these input characteristics and then to be applied to the system with these characteristics, without affecting adaptation. This includes allowing correct adaptation while the plant input is saturated and allows the adaptation law to function when not actually in control of the plant. To apply the method, estimates of actuator positions must be found. However, the adaptation law can correct for errors in these estimates. Proof of boundedness of system signals is provided for a single hidden-layer perceptron neural network adaptive law. Simulation results utilizing the methods introduced for neural network adaptive control of a reusable launch vehicle are presented for nominal flight and under failure cases that require considerable adaptation.