Organizational Unit:
College of Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
Organizational Unit
Organizational Unit

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Physics of Morphogenetic Matter
    (Georgia Institute of Technology, 2021-11-08) Gardel, Margaret
    My lab studies how the movement and shape of living cells is controlled by living materials constructed by protein assemblies within the cell interior. In this talk, I will describe my lab’s recent efforts to understand the design principles of the active, soft materials that drive morphogenesis of epithelial tissue. In particular, we are interested in the design principles by which protein-based materials generate, relax, sense and adapt to mechanical force. Here I will describe our current experimental efforts to study the regulation of the shape and size of epithelial cells. If time allows, I will discuss how physical constraints govern cell size regulation in epithelial tissue.
  • Item
    Cell Mechanics: The Active Polymer Networks Underlying Force Transmission in Living Cells
    (Georgia Institute of Technology, 2012-04-16) Gardel, Margaret
    Many different types of biological cells have the capability of sensing and generating mechanical forces. These biophysical properties of cells are utilized for many different aspects of cell physiology, including cell migration and division as well as building multi-cellular assemblies. To a large degree, the active mechanical behavior of cells is regulated by the filamentous actin (F-actin) cytoskeleton. F-actin is a semi-flexible biopolymer that forms the basis of larger length scale structures in the cell through the action of other proteins that regulate assembly, cross-linking and force generation. Nearly all of these processes are driven far from thermal equilibrium by processes that rely on the consumption of chemical energy to regulate the spatial and temporal organization of network mechanics and force generation. To elucidate the physical properties of the actin cytoskeleton, we have studied the dynamics and biophysical properties of actin networks formed with myosin motors both in live cells and reconstituted networks of purified proteins. A common feature among both actin/myosin and adhesive structures is that their stability and mechanics is highly tuned based on the amount of external tension. This property enables rapid remodeling under low tension, but stabilizes the structures as forces are increases. Thus, cellular materials provide insight into design principles that are utilized by highly adaptive matter.