Organizational Unit:
College of Sciences

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Includes Organization(s)
Organizational Unit
Organizational Unit
Organizational Unit

Publication Search Results

Now showing 1 - 7 of 7
  • Item
    First-principles study of hydrogen storage materials
    (Georgia Institute of Technology, 2008-03-24) Ma, Zhu
    In this thesis, we use first-principles calculations to study the structural, electronic, and thermal properties of several complex hydrides. We investigate structural and electronic properties of Na-Li alanates. Although Na alanate can reversibly store H with Ti catalyst, its weight capacity needs to be improved. This can be accomplished by partial replacement of Na with lighter elements. We explore the structures of possible Na-Li alloy alanates, and study their phase stability. We also study the structural and thermal properties of Li/Mg/Li-Mg Amides/Imides. Current experimental results give a disordered model about the structure of Li-Mg Imide, in which the positions of Li and Mg are not specified. In addition the model gives a controversial composition stoichiometry. We try to resolve this controversy by searching for low-energy ordered phases. In the last part, we study the structural, energetic, and electronic properties of the La-Mg-Pd-H system. This quaternary system is another example of hydrogenation-induced metal-nonmetal transition without major reconstruction of metal host structure, and it is also with partial reversible H capacity. Experiment gives partially disordered H occupancy on two Wyckoff positions. Our calculation explains the structural and bonding characteristics observed in experiment.
  • Item
    Confinement effect on semiconductor nanowires properties
    (Georgia Institute of Technology, 2007-11-02) Nduwimana, Alexis
    Confinement effect on semiconductor nanowires properties. Alexis Nduwimana 100 pages Directed by Dr. Mei-Yin Chou We study the effect of confinement on various properties of semiconductor nanowires. First, we study the size and direction dependence of the band gap of germanium nanowires. We use the density functional theory in the local density approximation. Results shows that the band gap decreases with the diameter The susceptibility of these nanowires is also computed. Second, we look at the confinement effect on the piezoelectric coefficients of ZnO and AlN nanowires. The Berry phase method is used. It is found that depending on passivation, thepiezoelectric effect can decrease or increase. Finally, we study the size and direction dependence of the melting temperature of silicon nanowires. We use the molecular dynamics with the Stillinger Weber potential. Results indicate that the melting temperature increases with the nanowire diameter and that it is direction dependent.
  • Item
    First-principles Calculations on the Electronic, Vibrational, and Optical Properties of Semiconductor Nanowires
    (Georgia Institute of Technology, 2006-08-15) Yang, Li
    The first part of my PhD work is about the lattice vibrations in silicon nanowires. First-principles calculations based on the linear response are performed to investigate the quantum confinement effect in lattice vibrations of silicon nanowires (SiNW). The radial breathing modes (RBM) are found in our calculations, which have a different size-dependent frequency shift compared with the optical modes. They are well explained by the elastic model. Finally, the relative activity of the Raman scattering in the smallest SiNW is calculated. The RBM can be clearly identified in the Raman spectrum, which can be used to estimate the size of nanowires in experiment. In the second part of my PhD work, we focus on the electron-hole pair (exciton) in semiconductor nanowires and its influence on the optical absorption spectra. First-principles calculations are performed for a hydrogen-passivated silicon nanowire with a diameter of 1.2 nm. Using plane wave and pseudopotentials, the quasiparticle states are calculated within the so-called GW approximation, and the electron-hole interaction is evaluated with the Bethe-Salpeter Equation (BSE). The enhanced excitonic effect is found in the absorption spectrum. The third part of my work is about the electronic structure in Si/Ge core-shell nanowires. The electronic band structure is studied with first-principles methods. Individual conduction and valence bands are found in the core part and the shell part, respectively. The band offsets are determined, which give rise to the spatial separation of electron and hole charge carriers in different regions of the nanowires. This allows for a novel-doping scheme that supplies the carriers into a separate region in order to avoid the scattering problem. This is the key factor to create high-speed devices. With the confinement effect, our results show important correction in the band offset compared with the bulk heterostructure. Finally, an optimum doping strategy is proposed based on our band-offset data.
  • Item
    Quasiparticle calculations for metal hydrides
    (Georgia Institute of Technology, 2002-12) Alford, John Ashley, II
  • Item
    A quantum Monte Carlo study of exchange and correlation in the silicon pseudo atom
    (Georgia Institute of Technology, 2000-12) Puzder, Aaron
  • Item
    A first-principles study of the niobium-hydrogen system
    (Georgia Institute of Technology, 2000-12) Li, Changlin
  • Item
    Radioactive decay studies
    (Georgia Institute of Technology, 2000-08) MacDonald, Brian Davis