Organizational Unit:
School of Mathematics

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 17
  • Item
    Graph structures and well-quasi-ordering
    (Georgia Institute of Technology, 2014-06-16) Liu, Chun-Hung
    Robertson and Seymour proved that graphs are well-quasi-ordered by the minor relation. In other words, given infinitely many graphs, one graph contains another as a minor. An application of this theorem is that every property that is closed under deleting vertices, edges, and contracting edges can be characterized by finitely many graphs, and hence can be decided in polynomial time. In this thesis we are concerned with the topological minor relation. We say that a graph G contains another graph H as a topological minor if H can be obtained from a subgraph of G by repeatedly deleting a vertex of degree two and adding an edge incident with the neighbors of the deleted vertex. Unlike the relation of minor, the topological minor relation does not well-quasi-order graphs in general. However, Robertson conjectured in the late 1980's that for every positive integer k, the topological minor relation well-quasi-orders graphs that do not contain a topological minor isomorphic to the path of length k with each edge duplicated. This thesis consists of two main results. The first one is a structure theorem for excluding a fixed graph as a topological minor, which is analogous to a cornerstone result of Robertson and Seymour, who gave such a structure for graphs that exclude a fixed minor. Results for topological minors were previously obtained by Grohe and Marx and by Dvorak, but we push one of the bounds in their theorems to the optimal value. This improvement is needed for the next theorem. The second main result is a proof of Robertson's conjecture. As a corollary, properties on certain graphs closed under deleting vertices, edges, and "suppressing" vertices of degree two can be characterized by finitely many graphs, and hence can be decided in polynomial time.
  • Item
    Pfaffian orientations, flat embeddings, and Steinberg's conjecture
    (Georgia Institute of Technology, 2014-04-28) Whalen, Peter
    The first result of this thesis is a partial result in the direction of Steinberg's Conjecture. Steinberg's Conjecture states that any planar graph without cycles of length four or five is three colorable. Borodin, Glebov, Montassier, and Raspaud showed that planar graphs without cycles of length four, five, or seven are three colorable and Borodin and Glebov showed that planar graphs without five cycles or triangles at distance at most two apart are three colorable. We prove a statement that implies the first of these theorems and is incomparable with the second: that any planar graph with no cycles of length four through six or cycles of length seven with incident triangles distance exactly two apart are three colorable. The third and fourth chapters of this thesis are concerned with the study of Pfaffian orientations. A theorem proved by William McCuaig and, independently, Neil Robertson, Paul Seymour, and Robin Thomas provides a good characterization for whether or not a bipartite graph has a Pfaffian orientation as well as a polynomial time algorithm for that problem. We reprove this characterization and provide a new algorithm for this problem. In Chapter 3, we generalize a preliminary result needed to reprove this theorem. Specifically, we show that any internally 4-connected, non-planar bipartite graph contains a subdivision of K3,3 in which each path has odd length. In Chapter 4, we make use of this result to provide a much shorter proof using elementary methods of this characterization. In the fourth and fifth chapters we investigate flat embeddings. A piecewise-linear embedding of a graph in 3-space is flat if every cycle of the graph bounds a disk disjoint from the rest of the graph. We provide a structural theorem for flat embeddings that indicates how to build them from small pieces in Chapter 5. In Chapter 6, we present a class of flat graphs that are highly non-planar in the sense that, for any fixed k, there are an infinite number of members of the class such that deleting k vertices leaves the graph non-planar.
  • Item
    Minor-minimal non-projective planar graphs with an internal 3-separation
    (Georgia Institute of Technology, 2012-11-13) Asadi Shahmirzadi, Arash
    The property that a graph has an embedding in the projective plane is closed under taking minors. Thus by the well known Graph Minor theorem of Robertson and Seymour, there exists a finite list of minor-minimal graphs, call it L, such that a given graph G is projective planar if and only if G does not contain any graph isomorphic to a member of L as a minor. Glover, Huneke and Wang found 35 graphs in L, and Archdeacon proved that those are all the members of L, but Archdeacon's proof never appeared in any refereed journal. In this thesis we develop a modern approach and technique for finding the list L, independent of previous work. Our approach is based on conditioning on the connectivity of a member of L. Assume G is a member of L. If G is not 3-connected then the structure of G is well understood. In the case that G is 3-connected, the problem breaks down into two main cases, either G has an internal separation of order three or G is internally 4-connected. In this thesis we find the set of all 3-connected minor minimal non-projective planar graphs with an internal 3-separation. For proving our main result, we use a technique which can be considered as a variation and generalization of the method that Robertson, Seymour and Thomas used for non-planar extension of planar graphs. Using this technique, besides our main result, we also classify the set of minor minimal obstructions for a-, ac-, abc-planarity for rooted graphs. (A rooted graph (G,a,b,c) is a-planar if there exists a split of the vertex a to a' and a' in G such that the new graph G' obtained by the split has an embedding in a disk such that the vertices a', b, a', c are on the boundary of the disk in the order listed. We define b- and c-planarity analogously. We say that the rooted graph (G,a,b,c) is ab-planar if it is a-planar or b-planar, and we define abc-planarity analogously.)
  • Item
    5-list-coloring graphs on surfaces
    (Georgia Institute of Technology, 2012-08-23) Postle, Luke Jamison
    Thomassen proved that there are only finitely many 6-critical graphs embeddable on a fixed surface. He also showed that planar graphs are 5-list-colorable. This thesis develops new techniques to prove general theorems for 5-list-coloring graphs embedded in a fixed surface. Indeed, a general paradigm is established which improves a number of previous results while resolving several open conjectures. In addition, the proofs are almost entirely self-contained. In what follows, let S be a fixed surface, G be a graph embedded in S and L a list assignment such that, for every vertex v of G, L(v) has size at least five. First, the thesis provides an independent proof of a theorem of DeVos, Kawarabayashi and Mohar that says if G has large edge-width, then G is 5-list-colorable. Moreover, the bound on the edge-width is improved from exponential to logarithmic in the Euler genus of S, which is best possible up to a multiplicative constant. Second, the thesis proves that there exist only finitely many 6-list-critical graphs embeddable in S, solving a conjecture of Thomassen from 1994. Indeed, it is shown that the number of vertices in a 6-list-critical graph is at most linear in genus, which is best possible up to a multiplicative constant. As a corollary, there exists a linear-time algorithm for deciding 5-list-colorability of graphs embeddable in S. Furthermore, we prove that the number of L-colorings of an L-colorable graph embedded in S is exponential in the number of vertices of G, with a constant depending only on the Euler genus g of S. This resolves yet another conjecture of Thomassen from 2007. The thesis also proves that if X is a subset of the vertices of G that are pairwise distance Omega(log g) apart and the edge-width of G is Omega(log g), then any L-coloring of X extends to an L-coloring of G. For planar graphs, this was conjectured by Albertson and recently proved by Dvorak, Lidicky, Mohar, and Postle. For regular coloring, this was proved by Albertson and Hutchinson. Other related generalizations are examined.
  • Item
    Color-critical graphs on surfaces
    (Georgia Institute of Technology, 2010-08-23) Yerger, Carl Roger, Jr.
    A graph is (t+1)-critical if it is not t-colorable, but every proper subgraph is. In this thesis, we study the structure of critical graphs on higher surfaces. One major result in this area is Carsten Thomassen's proof that there are finitely many 6-critical graphs on a fixed surface. This proof involves a structural theorem about a precolored cycle C of length q. In general terms, he proves that a coloring, c, of C, can be extended inside the cycle, or there exists a subgraph H with at most a number of vertices exponential in q such that c can not be extended to a 5-coloring of H. In Chapter 2, we proved an alternative proof that reduces the number of vertices in H to be cubic in q. In Chapter 3, we find the nine 6-critical graphs among all graphs embeddable on the Klein bottle. In Chapter 4, we prove a result concerning critical graphs related to an analogue of Steinberg's conjecture for higher surfaces. We show that if G is a 4-critical graph embedded on surface S, with Euler genus g and has no cycles of length four through ten, then G has at most 2442g + 37 vertices.
  • Item
    Tree-based decompositions of graphs on surfaces and applications to the traveling salesman problem
    (Georgia Institute of Technology, 2007-12-19) Inkmann, Torsten
    The tree-width and branch-width of a graph are two well-studied examples of parameters that measure how well a given graph can be decomposed into a tree structure. In this thesis we give several results and applications concerning these concepts, in particular if the graph is embedded on a surface. In the first part of this thesis we develop a geometric description of tangles in graphs embedded on a fixed surface (tangles are the obstructions for low branch-width), generalizing a result of Robertson and Seymour. We use this result to establish a relationship between the branch-width of an embedded graph and the carving-width of an associated graph, generalizing a result for the plane of Seymour and Thomas. We also discuss how these results relate to the polynomial-time algorithm to determine the branch-width of planar graphs of Seymour and Thomas, and explain why their method does not generalize to surfaces other than the sphere. We also prove a result concerning the class C_2k of minor-minimal graphs of branch-width 2k in the plane, for an integer k at least 2. We show that applying a certain construction to a class of graphs in the projective plane yields a subclass of C_2k, but also show that not all members of C_2k arise in this way if k is at least 3. The last part of the thesis is concerned with applications of graphs of bounded tree-width to the Traveling Salesman Problem (TSP). We first show how one can solve the separation problem for comb inequalities (with an arbitrary number of teeth) in linear time if the tree-width is bounded. In the second part, we modify an algorithm of Letchford et al. using tree-decompositions to obtain a practical method for separating a different class of TSP inequalities, called simple DP constraints, and study their effectiveness for solving TSP instances.
  • Item
    New Tools and Results in Graph Structure Theory
    (Georgia Institute of Technology, 2006-03-30) Hegde, Rajneesh
    We first prove a ``non-embeddable extensions' theorem for polyhedral graph embeddings. Let G be a ``weakly 4-connected' planar graph. We describe a set of constructions that produce a finite list of non-planar graphs, each having a minor isomorphic to G, such that every non-planar weakly 4-connected graph H that has a minor isomorphic to G has a minor isomorphic to one of the graphs in the list. The theorem is more general and applies in particular to polyhedral embeddings in any surface. We discuss an approach to proving Jorgensen's conjecture, which states that if G is a 6-connected graph with no K_6 minor, then it is apex, that is, it has a vertex v such that deleting v yields a planar graph. We relax the condition of 6-connectivity, and prove Jorgensen's conjecture for a certain sub-class of these graphs. We prove that every graph embedded in the Klein bottle with representativity at least 4 has a K_6 minor. Also, we prove that every ``locally 5-connected' triangulation of the torus, with one exception, has a K_6 minor. (Local 5-connectivity is a natural notion of local connectivity for a surface embedding.) The above theorem uses a locally 5-connected version of the well-known splitter theorem for triangulations of any surface. We conclude with a theoretically optimal algorithm for the following graph connectivity problem. A shredder in an undirected graph is a set of vertices whose removal results in at least three components. A 3-shredder is a shredder of size three. We present an algorithm that, given a 3-connected graph, finds its 3-shredders in time proportional to the number of vertices and edges, when implemented on a RAM (random access machine).
  • Item
    Extremal Functions for Graph Linkages and Rooted Minors
    (Georgia Institute of Technology, 2005-11-28) Wollan, Paul
    Extremal Functions for Graph Linkages and Rooted Minors Paul Wollan 137 pages Directed by: Robin Thomas A graph G is k-linked if for any 2k distinct vertices s_1,..., s_k,t_1,..., t_k there exist k vertex disjoint paths P_1,...,P_k such that the endpoints of P_i are s_i and t_i. Determining the existence of graph linkages is a classic problem in graph theory with numerous applications. In this thesis, we examine sufficient conditions that guarantee a graph to be k-linked and give the following theorems. (A) Every 2k-connected graph on n vertices with 5kn edges is k-linked. (B) Every 6-connected graph on n vertices with 5n-14 edges is 3-linked. The proof method for Theorem (A) can also be used to give an elementary proof of the weaker bound that 8kn edges suffice. Theorem (A) improves upon the previously best known bound due to Bollobas and Thomason stating that 11kn edges suffice. The edge bound in Theorem (B) is optimal in that there exist 6-connected graphs on n vertices with 5n-15 edges that are not 3-linked. The methods used prove Theorems (A) and (B) extend to a more general structure than graph linkages called rooted minors. We generalize the proof methods for Theorems (A) and (B) to find edge bounds for general rooted minors, as well as finding the optimal edge bound for a specific family of bipartite rooted minors. We conclude with two graph theoretical applications of graph linkages. The first is to the problem of determining when a small number of vertices can be used to cover all the odd cycles in a graph. The second is a simpler proof of a result of Boehme, Maharry and Mohar on complete minors in huge graphs of bounded tree-width.
  • Item
    Matching structure and Pfaffian orientations of graphs
    (Georgia Institute of Technology, 2005-07-20) Norine, Serguei
    The first result of this thesis is a generation theorem for bricks. A brick is a 3-connected graph such that the graph obtained from it by deleting any two distinct vertices has a perfect matching. The importance of bricks stems from the fact that they are building blocks of a decomposition procedure of Kotzig, and Lovasz and Plummer. We prove that every brick except for the Petersen graph can be generated from K_4 or the prism by repeatedly applying certain operations in such a way that all the intermediate graphs are bricks. We use this theorem to prove an exact upper bound on the number of edges in a minimal brick with given number of vertices and to prove that every minimal brick has at least three vertices of degree three. The second half of the thesis is devoted to an investigation of graphs that admit Pfaffian orientations. We prove that a graph admits a Pfaffian orientation if and only if it can be drawn in the plane in such a way that every perfect matching crosses itself even number of times. Using similar techniques, we give a new proof of a theorem of Kleitman on the parity of crossings and develop a new approach to Turan's problem of estimating crossing number of complete bipartite graphs. We further extend our methods to study k-Pfaffian graphs and generalize a theorem by Gallucio, Loebl and Tessler. Finally, we relate Pfaffian orientations and signs of edge-colorings and prove a conjecture of Goddyn that every k-edge-colorable k-regular Pfaffian graph is k-list-edge-colorable. This generalizes a theorem of Ellingham and Goddyn for planar graphs.
  • Item
    Extremal Functions for Contractions of Graphs
    (Georgia Institute of Technology, 2004-07-08) Song, Zixia
    In this dissertation, a problem related to Hadwiger's conjecture has been studied. We first proved a conjecture of Jakobsen from 1983 which states that every simple graphs on $n$ vertices and at least (11n-35)/2 edges either has a minor isomorphic to K_8 with one edge deleted or is isomorphic to a graph obtained from disjoint copies of K_{1, 2, 2, 2, 2} and/or K_7 by identifying cliques of size five. We then studied the extremal functions for complete minors. We proved that every simple graph on nge9 vertices and at least 7n-27 edges either has a minor, or is isomorphic to K_{2, 2, 2, 3, 3}, or is isomorphic to a graph obtained from disjoint copies of K_{1, 2, 2, 2, 2, 2} by identifying cliques of size six. This result extends Mader's theorem on the extremal function for K_p minors, where ple7. We discussed the possibilities of extending our methods to K_{10} and K_{11} minors. We have also found the extremal function for K_7 plus a vertex minor.