Title:
Extremal Functions for Contractions of Graphs
Extremal Functions for Contractions of Graphs
Authors
Song, Zixia
Authors
Advisors
Thomas, Robin
Advisors
Associated Organizations
Series
Collections
Supplementary to
Permanent Link
Abstract
In this dissertation, a problem related to Hadwiger's conjecture has been studied. We first proved a conjecture of Jakobsen from 1983 which states that every simple graphs on $n$ vertices and at least (11n-35)/2 edges either has a minor isomorphic to K_8 with one edge deleted or is isomorphic to a graph obtained from disjoint copies of K_{1, 2, 2, 2, 2} and/or K_7 by identifying cliques of size five. We then studied the extremal functions for complete minors. We proved that every simple graph on nge9 vertices and at least 7n-27 edges either has a minor, or is isomorphic to K_{2, 2, 2, 3, 3}, or is isomorphic to a graph obtained from disjoint copies of K_{1, 2, 2, 2, 2, 2} by identifying cliques of size six. This result extends Mader's theorem on the extremal function for K_p minors, where ple7. We discussed the possibilities of extending our methods to K_{10} and K_{11} minors. We have also found the extremal function for K_7 plus a vertex minor.
Sponsor
Date Issued
2004-07-08
Extent
549703 bytes
Resource Type
Text
Resource Subtype
Dissertation