Organizational Unit:
School of Physics

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)
Organizational Unit

Publication Search Results

Now showing 1 - 10 of 116
  • Item
    Cube-Shaped Poo and Georgia Tech's Second Ig Nobel Prize
    (Georgia Institute of Technology, 2019-10-08) Hu, David L.
    How does a wombat produce cube-shaped feces? How long does it take an elephant to urinate? Answering these two questions have landed David Hu two Ig Nobel Prizes, awards given at Harvard University for research that makes people laugh, and then think. Hu will talk about his lab's latest adventures catching elephant pee in trash cans, inflating wombat intestines with clown balloons, and dressing up as a gigantic piece of cubed poo at this year's Ig Nobel Ceremony.
  • Item
    Quantum Computing and the Entanglement Frontier
    (Georgia Institute of Technology, 2019-04-15) Preskill, John
    The quantum laws governing atoms and other tiny objects seem to defy common sense, and information encoded in quantum systems has weird properties that baffle our feeble human minds. John Preskill will explain why he loves quantum entanglement, the elusive feature making quantum information fundamentally different from information in the macroscopic world. By exploiting quantum entanglement, quantum computers should be able to solve otherwise intractable problems, with far-reaching applications to cryptology, materials, and fundamental physical science. Preskill is less weird than a quantum computer, and easier to understand.
  • Item
    How a Failed Astrophysics Major Became a Successful Science Writer
    (Georgia Institute of Technology, 2019-03-12) Lemonick, Michael
    I knew from the time I was a very young child that I wanted to be an astronomer. The dream lasted until I got to college, where I learned to my dismay that I actually had no passion for doing what an astronomer does; what I really wanted is to know what an astronomer knows. This is the story of how it all worked out.
  • Item
    Forecasting Turbulence
    (Georgia Institute of Technology, 2018-11-26) Schatz, Michael F.
    Fluid turbulence is one of the greatest unsolved problems of classical physics (and the subject of a million dollar mathematical (Millenium) challenge). Centuries of research--including Leonardo da Vinci’s observations of “la turbolenza” and the best efforts of numerous physicists (Heisenberg, Kelvin, Rayleigh, Sommerfeld, ...)--have failed to yield a tractable predictive theory. However, recent theoretical and computational advances have successfully linked recurring transient patterns (coherent structures) within turbulence to unstable solutions of the equations governing fluid flow (the Navier-Stokes equations). The solutions describing coherent structures provide a geometrical structure that guides the evolution of turbulence. We describe laboratory experiments where the geometry of key coherent structures is identified and harnessed to construct a roadmap to forecast the behavior of weakly turbulent flows.
  • Item
    Celebration of 2018 Physics Nobel Prize: Lighting the way with microscopic tractor beams and sculpted laser pulse
    (Georgia Institute of Technology, 2018-10-23) Curtis, Jennifer ; Raman, Chandra ; Trebino, Rick
    The 2018 Nobel Prize in Physics recognizes two breakthrough inventions in laser physics. The first, optical tweezers, allows scientist and engineers to use lasers like the tractor beams of Star Trek to manipulate everything from molecules to living cells. Optical tweezers have provided researchers with fingers in the microscopic world that can pull apart DNA, probe the mechanics of life, detect disease and study fundamental interactions in biology, physics, chemistry and engineering. The second breakthrough, chirped pulse amplification, enabled the construction of lasers of incredible power and precision. With the super-high power lasers came cutting-edge applications as diverse as attosecond time-resolved dynamics of atoms and molecules and laser eye surgery. In this public talk, Georgia Tech Professor Rick Trebino will give an overview of optical physics. Professors Jennifer Curtis and Chandra Raman will present a brief history of these discoveries and discuss their impacts on science and society, with an audience Q&A session afterwards.
  • Item
    Ultra-high Resolution Astronomical imaging using quantum properties of light
    (Georgia Institute of Technology, 2018-10-01) Kieda, David B.
    Ever since the first astronomical telescope observations made by Galileo (1610), optical astronomy has developed increasingly sophisticated methods for exploring the universe using only the classical (wave-description) properties of light. The quantum mechanical properties of light, including photon bunching and orbital angular momentum, carry substantially more information about the nature of the astronomical sources, yet these properties are currently not exploited. This talk will describe the development of a new astronomical capability which exploits the quantum properties of light. The technique has the potential to achieve < 100 micro-arc second angular resolution in the optical wavelengths; such high angular resolution would be sufficient to directly imaging the moons of Jupiter passing across the disk of a main sequence star ~8 light years away. We describe a conclusive demonstration of quantum photon bunching (Hanbury Brown-Twiss Interferometry) in the laboratory using simulated stars and binary systems. We describe the design of a future ultra-high resolution optical astronomical imaging observatory using existing and future arrays of Imaging Air Cherenkov Telescopes (IACTs). The talk describes the potential optical imaging resolution of the VERITAS IACT observatory array (Amado, Arizona) and the future CTA IACT Observatory (Canary Islands, Spain and Paranal, Chile).
  • Item
    When Will We Find E.T. and What Happens If We Do?
    (Georgia Institute of Technology, 2018-09-24) Shostak, Seth
    Are we alone in the universe? The scientific hunt for extraterrestrial intelligence is now well into its fifth decade, and we still haven’t discovered any cosmic company. Could all this mean that finding biology beyond Earth, even if it exists, is a project for the ages – one that might take centuries or longer? New approaches and new technology for detecting sentient beings elsewhere suggest that there is good reason to expect that we could uncover evidence of sophisticated civilizations – the type of aliens we see in the movies and on TV – within a few decades. But why now, and what sort of evidence can we expect? And how will that affect humanity? Also, if we do find E.T., what would be the societal impact of learning that something, or someone, is out there? Note the speaker gave a Physics Colloquium at 3pm in Pettit Microelectronics 102A&B with the same abstract. https://smartech.gatech.edu/handle/1853/60456
  • Item
    SETI: Any Closer to a Discovery?
    (Georgia Institute of Technology, 2018-09-24) Shostak, Seth
    Are we alone in the universe? The scientific hunt for extraterrestrial intelligence is now well into its fifth decade, and we still haven’t discovered any cosmic company. Could all this mean that finding biology beyond Earth, even if it exists, is a project for the ages – one that might take centuries or longer? New approaches and new technology for detecting sentient beings elsewhere suggest that there is good reason to expect that we could uncover evidence of sophisticated civilizations – the type of aliens we see in the movies and on TV – within a few decades. But why now, and what sort of evidence can we expect? And how will that affect humanity? Also, if we do find E.T., what would be the societal impact of learning that something, or someone, is out there?
  • Item
    The American Physical Society Report on the Status of LGBT People in Physics
    (Georgia Institute of Technology, 2018-04-16) Atherton, Tim
    In this talk, I’ll discuss climatic issues faced by LGBT people in Physics, informed by findings of the recent American Physical Society report on the status of LGBT people in Physics. This report was prepared for the APS by an ad hoc committee of physicists, spanning a range of institutions types and career stages, and included information from focus groups held at APS meetings, the first ever climate survey of LGBT people in physics, and a set of in-depth interviews with individuals who self-identify as LGBT. Driven by this evidence, I’ll discuss implications for pedagogy, as well as collective and individual actions the community can take to alleviate the issues identified.
  • Item
    Arch and scaffold: Hilbert space and transformation theory
    (Georgia Institute of Technology, 2018-04-02) Janssen, Michel
    In early 1927, Paul Dirac and Pascual Jordan, independently of one another, published their versions of a general formalism tying the various forms of the new quantum theory together and giving the theory’s statistical interpretation in full generality. This formalism has come to be known as the Dirac-Jordan (statistical) transformation theory. A few months later, in response to these publications, John von Neumann published his Hilbert space formalism for quantum mechanics. The relation between the two formalisms can be captured in terms of a metaphor of arches and scaffolds that I have argued fits a number of instances of theory change in physics. What is unclear in this case is whether the story is best told with Hilbert space playing the role of the arch built on transformation theory as a scaffold to be dismantled once the arch could support itself, or with transformation theory playing the role of the arch and Hilbert space providing the scaffold built to prevent Jordan’s mathematically unsound arch from collapsing. Either way, a narrative for this episode in the history of quantum mechanics based on the arches-and-scaffolds metaphor illustrates the promise of borrowing ideas from the approach to evolutionary biology known as evodevo for reconstructing genealogies of theories rather than species.