Organizational Unit:
School of Materials Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 509
  • Item
    Depth resolved luminescence from oriented ZnO nanowires
    (Georgia Institute of Technology, 2009-12-14) Rosenberg, R. A. ; Haija, M. Abu ; Vijayalakshmi, K. ; Zhou, Jun ; Xu, Sheng ; Wang, Z. L. (Zhong Lin)
    We have utilized the limited penetration depth of x-rays to study the near-surface properties of vertically aligned ZnO nanowires. For an energy of 600 eV the penetration depth varies between 3 and 132 nm as the incidence angle changes from 2° to 33°. Thus, by obtaining optical luminescence spectra as a function of incidence angle, it is possible to probe the near-surface region with nanometer-scale resolution. We will present angle dependent optical luminescence data from oriented ZnO nanowires. By fitting the results to a simple model, we extract a depth for the surface defect regions of ~14 nm.
  • Item
    Zinc Oxide coated Carbon Nanotubes as Piezoelectric Nanogenerators
    (Georgia Institute of Technology, 2009-12) Mason, Celeste
    Piezoelectric nanogenerators were created using two designs: coating carbon nanotubes (CNTs) grown on a silicon wafer substrate with a thin film of zinc oxide (ZnO), coupled with an additional gold-coated CNT grown wafer to act as an electrodes and coating carbon nanotubes (CNTs) grown on carbon fiber with each type of coating to form flexible electrodes. The CNTs on all samples were grown using a standard recipe, with thermally evaporated iron as catalyst. ZnO deposition techniques such as RF sputtering and ion-assisted deposition were used. Gold deposition was accomplished by thermal evaporation and RF sputtering. Once electrodes were combined, preliminary electrical testing resulted in measurement of current densities of up to 4.2x10-7 A/cm3. Additional electrical measurements indicated that the current generated was the result of piezoelectric behavior of the ZnO coating. These values may be increased with better penetration of both gold and ZnO coatings during deposition on the CNTs. Improvement of film quality, such as gold adhesion and ZnO crystal orientation, may also increase current generation.
  • Item
    Effect of Permittivity and Permeability of a Flexible Magnetic Composite Material on the Performance and Miniaturization Capability of Planar Antennas for RFID and Wearable Wireless Applications
    (Georgia Institute of Technology, 2009-12) Martin, Lara J. ; Ooi, Sooliam ; Staiculescu, Daniela ; Hill, Michael D. ; Wong, C. P. ; Tentzeris, Emmanouil M.
    This paper is an investigation of the feasibility of applying a mechanically flexible magnetic composite material to radio frequency identification (RFID) planar antennas operating in the lower ultrahigh-frequency (UHF) spectrum (∼300– 500 MHz). A key challenge is that the magnetic loss introduced by the magnetic composite must be sufficiently low for successful application at the targeted operating frequency. A flexible magnetic composite comprised of particles of Z-phase Co hexaferrite, also known as Co₂Z, in a silicone matrix was developed. To the authors’ knowledge, this is the first flexible magnetic composite demonstrated to work at these frequencies. The benchmarking structure was a quarter-wavelength microstrip patch antenna. Antennas on the developed magnetic composite and pure silicone substrates were electromagnetically modeled in Ansoft High- Frequency Sounder System full wave electromagnetic software. A prototype of the antenna on the magnetic composite was fabricated, and good agreement between the simulated and measured results was found. Comparison of the antennas on the magnetic composite versus the pure silicone substrate showed miniaturization capability of 2.4× and performance differences of increased bandwidth and reduced gain, both of which were attributed in part to the increase in the dielectric and magnetic losses. A key finding of this paper is that a small amount of permeability (μr∼2.5) can provide a substantial capability for miniaturization, while sufficiently low-magnetic loss can be introduced for successful application at the targeted operating frequency. This magnetic composite shows the capability to fulfill this balance and to be a feasible option for RFID, flexible wearable, and conformal applications in the lower UHF spectrum.
  • Item
    Optimization of mechanical properties and manufacturing techniques to enable shape-memory polymer processing
    (Georgia Institute of Technology, 2009-11-20) Voit, Walter Everett
    This research investigates the synthesis and manufacture of shape-memory polymer (SMP) systems for use in biomedical and commodity applications. The research centers on improving the mechanical properties of thermoset acrylate copolymers with memory properties at reasonable cost through various design and manufacturing techniques: high-strain polymer synthesis and radiation crosslinking. The research assesses combinations of linear monomers and a low density of crosslinker to characterize new functional materials and optimize emerging mechanical properties such as the glass transition temperature (Tg) and rubbery modulus (ER). Exploring materials with large recoverable strains, a model copolymer of photo-polymerized methyl acrylate (MA), isobornyl acrylate and crosslinker bisphenol A ethoxylate dimethacrylate was shown to strain above 800%, twice the previously published value for SMPs, and recover fully. In the quest to maximize fully recoverable strains, a new hybrid molecule nicknamed Xini, which serves as both an initiator and a crosslinker, was also theorized, synthesized, polymerized into SMP networks and characterized. In the past, thermoset SMPs were made into complex shapes using expensive top-down techniques. A block of polymer was made and custom machining was required to craft complex parts. This prohibited devices in cost-competitive commodity application spaces. This research has proposed and validated a new method for accurately tuning the thermomechanical properties of network acrylates with shape-memory properties: Mnemosynation, eponymously named for the Greek goddess of memory. This novel manufacturing process imparts long term 'memory' on an otherwise amorphous thermoplastic material utilizing radiation-induced covalent crosslinking, and can be likened to Vulcanization, which imparts strength on natural rubber utilizing sulfur crosslinks. Adjustment of ER in the range from below 1 MPa to above 13 MPa has been demonstrated. ER was tailored by varying both radiation dose between 5 and 300 kGy and crosslinker concentration between 1.00 and 25.0 wt%. Tg manipulation was demonstrated between 23 ˚C and 70 ˚C. Mnemosynation combines advances in radiation grafting and acrylic SMP synthesis to enable both traditional plastics processing (blow molding, injection molding, etc.) and control of thermoset shape-memory properties. Combining advances in both high strain polymer synthesis and radiation crosslinking, a new paradigm in SMP composites manufacture-namely, that materials can be designed to enhance strain capacity at moderate stress, rather than maximum strength-was established. Various fibers with very different mechanical properties were impregnated with SMPs and thermo-mechanically assessed to develop an understanding of the technical parameters necessary to craft self-adjusting, multi-actuated, SMP-fiber composite orthopedic casts. This exploration syncs with the overarching aim of the research, which is to understand the fundamental scientific drivers necessary to enable new devices mass-manufactured from acrylate copolymers and optimize their emerging mechanical properties.
  • Item
    Mesoporous silica/polymer nanocomposites
    (Georgia Institute of Technology, 2009-11-13) Liu, Yi
    New approaches through grafting initiators onto the surface of inner-wall of mesoporous silica to synthesize polymer inside the nano-channels to obtain mesoporous silica/polymer nanocomposites were developed and investigated. Using the newly developed approach, PMMA was successfully synthesized through free radical polymerization and nylon 6 though in situ anionic ring-opening polymerization inside the nano-channels. The spherical mesoporous silica/PMMA composites we obtained showed a higher degradation temperature and narrower degradation range than pure commercially available PMMA. Spherical PMMA capsules were obtained after the silica network was dissolved with hydrofluoric acid, these pure PMMA spheres had the same thermal properties and morphology as they had with in the composites. The BMS/nylon 6 nanocomposites were spheres with the same diameter as pure BMS. About 50 wt% of the composites was newly synthesized nylon 6. The synthesized nylon 6 was proven to contain both α-form crystallite and γ-form crystallites with covalent bonds with the surface of silica inside the nano-channels.
  • Item
    Mechanisms regulating osteoblast response to surface microtopography and vitamin D
    (Georgia Institute of Technology, 2009-11-11) Bell, Bryan Frederick
    A comprehensive understanding of the interactions between orthopaedic and dental implant surfaces with the surrounding host tissue is essential in the design of advanced biomaterials that better promote bone growth and osseointegration of implants. Dental implants with roughened surfaces and high surface energy are well known to promote osteoblast differentiation in vitro and promote increased bone-to-implant contact in vivo. In addition, increased surface roughness increases osteoblasts response to the vitamin D metabolite 1α,25(OH)2D3. However, the exact mechanisms mediating cell response to surface properties and 1α,25(OH)2D3 are still being elucidated. The central aim of the thesis is to investigate whether integrin signaling in response to rough surface microtopography enhances osteoblast differentiation and responsiveness to 1α,25(OH)2D3. The hypothesis is that the integrin α5β1 plays a role in osteoblast response to surface microtopography and that 1α,25(OH)2D3 acts through VDR-independent pathways involving caveolae to synergistically enhance osteoblast response to surface roughness and 1α,25(OH)2D3. To test this hypothesis the objectives of the studies performed in this thesis were: 1) to determine if α5β1 signaling is required for osteoblast response to surface microstructure; 2) to determine if increased responsiveness to 1α,25(OH)2D3 requires the vitamin D receptor, 3) to determine if rough titanium surfaces functionalized with the peptides targeting integrins (RGD) and transmembrane proteoglycans (KRSR) will enhance both osteoblast proliferation and differentiation, and 4) to determine whether caveolae, which are associated with integrin and 1α,25(OH)2D3 signaling, are required for enhance osteogenic response to surface microstructure and 1α,25(OH)2D3. The results demonstrate that integrins, VDR, and caveolae play important roles in mediating osteoblast response to surface properties and 1α,25(OH)2D3. Silencing of the β1 integrin in osteoblast-like MG63 cells significantly reduced osteogenic response to surface topography and 1α,25(OH)2D3. Silencing of the α5 subunit did not alter the response of MG63 cells to changing surface roughness or chemistry, although future work must confirm these results given similar cell surface α5 integrin expression observed in control and α5-silenced cells. Multifunctional RGD, KRSR, and KSSR coated surfaces show that RGD increased osteoblast proliferation and reduced differentiation, KRSR had no affect on osteoblast phenotype, and KSSR increased osteoblast differentiation. These results suggest that titanium surfaces can be modified to manipulate proliferation and differentiation and that RGD/KSSR functionalized surfaces could be further investigated for use as osteointegrative surfaces. The results using VDR deficient osteoblasts demonstrate that 1α,25(OH)2D3 acts via VDR-dependent mechanisms in cells cultured on titanium surfaces that support terminal differentiation. In caveolae deficient osteoblasts, 1α,25(OH)2D3 affected cell number, alkaline phosphatase activity, and TGF-β1 levels, although levels of osteocalcin and PGE2 were not affected. These results are consistent with the hypothesis that VDR is required for the actions of 1α,25(OH)2D3, but that caveolae-dependent membrane 1α,25(OH)2D3 signaling modulates traditional VDR signaling. The exact mechanisms for this interaction remain to be shown. Overall, these results are important in better understanding the role of β1 integrin partners in mediating osteoblast response to implant surfaces and in understanding how integrin signaling can alter osteoblast differentiation and responsiveness to 1α,25(OH)2D3 via genomic and non-genomic pathways.
  • Item
    The structure-property relation in nanocrystalline materials: a computational study on nanocrystalline copper by Monte Carlo and molecular dynamics simulations
    (Georgia Institute of Technology, 2009-11-10) Xu, Tao
    Nanocrystalline materials have been under extensive study in the past two decades. The reduction in grain size induces many abnormal behaviors in the properties of nanocrystalline materials, that have been investigated systematically and quantitatively. As one of the most fundamental relations in materials science, the structure-property relation should still apply on materials of nano-scale grain sizes. The characterization of grain boundaries (GBs) and related entities remains a big obstacle to understanding the structure-property relation in nanocrystalline materials. It is challenging experimentally to determine the topological properties of polycrystalline materials due to the complex and disordered grain boundary network presented in the nanocrystalline materials. The constantly improving computing power enables us to study the structure-property relation in nanocrystalline materials via Monte Carlo and molecular dynamic simulations. In this study, we will first propose a geometrical construction method based on inverse Monte Carlo simulation to generate digital microstructures with desired topological properties such as grain size, interface area, triple junction length as well as their statistical distributions. The influences on the grain shapes by different topological properties are studied. Two empirical geometrical laws are examined including the Lewis rule and Aboav-Weaire law. Secondly, defect free nanocrystalline Copper (nc-Cu) samples are generated by filling atoms into the Voronoi structure and then relaxed by molecular dynamics simulations. Atoms in the relaxed nc-Cu samples are then characterized into grain atoms, GB interface atoms, GB triple junction atoms and vertex atoms using a newly proposed method. Atoms in each GB entity can also be identified. Next, the topological properties of nc-Cu samples before and after relaxation are calculated and compared, indicating that there exists a physical limit in the number of atoms to form a stable grain boundary interface and triple junction in nanocrystalline materials. In addition, we are able to obtain the statistical averages of geometrical and thermal properties of atoms across each GB interfaces, the so-called GB profiles, and study the grain size, misorientation and temperature effects on the microstructures in nanocrystalline materials. Finally, nc-Cu samples with different topological properties are deformed under simple shear using MD simulation in an attempt to study the structure-property relation in nanocrystalline materials.
  • Item
    The role of the catalyst in the growth of one-dimensional nanostructures
    (Georgia Institute of Technology, 2009-11-10) Kirkham, Melanie
    Quasi one-dimensional (1D) nanostructures show great promise for many applications, including in solar cells, nanogenerators and chemical sensors, due to the high surface-to-volume ratio and unique properties of nanostructures. The growth of these nanostructures is commonly catalyzed by metal nanoparticles and generally attributed to the vapor-liquid-solid (VLS) mechanism. The purpose of this research is to better understand the role of the catalyst nanoparticles in the growth of 1D nanostructures, in order to allow improved control of the synthesis process. To this end, nanostructures were grown with a variety of compositions, including Au- and Sn-catalyzed ZnO, Au-catalyzed FexOy and Au-catalyzed Si nanostructures. The morphology of the nanostructures was characterized with electron microscopy, and the crystallographic orientation with X-ray texture analysis. The catalyst particles were further characterized with both in-situ and post-growth X-ray diffraction. The types of bonding in the source material and catalyst play a significant role in the diffusion path of the source material to the growth front and in the catalyst particle state during growth. Dissimilar bonding types in the source material and catalyst prevent bulk diffusion of the source material through the catalyst, thereby preventing eutectic melting of the catalyst. These results bring new insight into the catalyzed growth of 1D nanostructures and assist in the informed choice of appropriate catalyst materials, which may aid the utilization of 1D nanostructures in energy-related and other applications.
  • Item
    Structural colors from Morpho peleides butterfly wing scales
    (Georgia Institute of Technology, 2009-10-12) Ding, Yong ; Xu, Sheng ; Wang, Z. L. (Zhong Lin)
    A male Morpho peleides butterfly wing is decorated by two types of scales, cover and ground scales. We have studied the optical properties of each type of scales in conjunction with the structural information provided by cross-sectional transmission electron microscopy and computer simulation. The shining blue color is mainly from the Bragg reflection of the one-dimensional photonic structure, e.g., the shelf structure packed regularly in each ridges on cover scales. A thin-film-like interference effect from the base plate of the cover scale enhances such blue color and further gives extra reflection peaks in the infrared and ultraviolet regions. The analogy in the spectra acquired from the original wing and that from the cover scales suggests that the cover scales take a dominant role in its structural color. This study provides insight of using the biotemplates for fabricating smart photonic structures.
  • Item
    Enhanced Electrical Properties of Anisotropic Conductive Adhesive With $pi$ -Conjugated Self-Assembled Molecular Wire Junctions
    (Georgia Institute of Technology, 2009-09) Zhang, Rongwei ; Li, Yi ; Yim, Myung Jin ; Moon, Kyoung-Sik ; Lu, Daoqiang ; Wong, C. P.
    We have investigated the electrical properties of anisotropic conductive adhesive (ACA) joint using submicrometer- sized ( 500 nm in diameter) silver (Ag) particle as conductive filler with the effect of -conjugated self-assembled molecular wires. The ACAs with submicrometer-sized Ag particles have higher current carrying capability ( 3400 mA) than those with micro-sized Au-coated polymer particles ( 2000 mA) and Ag nanoparticles ( 2500 mA). More importantly, by construction of -conjugated self-assembled molecular wire junctions between conductive particles and integrated circuit (IC)/substrate, the electrical conductivity has increased by one order of magnitude and the current carrying capability of ACAs has improved by 600 mA. The crucial factors that govern the improved electrical properties are discussed based on the study of alignments and thermal stability of molecules on the submicrometer-sized Ag particle surface with surface-enhanced Raman spectroscopy (SERS), providing a fundamental understanding of conduction mechanism in ACA joints and guidelines for the formulation of high-performance ACAs in electronic packaging industry.