Organizational Unit:
School of Materials Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 9 of 9
  • Item
    Role of surface-like elastic constants in the phenomenology of confined nematics
    (Georgia Institute of Technology, 2017-01-13) Nayani, Karthik
    Confined nematics are a natural setting to study aspects relating to phenomenology of symmetry breaking, evolution and dynamics of topological defects. In this study we highlight the interplay of the surface-like elastic constants with the phenomenology mentioned above. We exploit nematics confined to cylinders to study a spontaneous reflection symmetry breaking phase transition. The role of saddle-splay elasticity in driving this transition is described in detail. We also confine nematics to rectangular geometries which reveal novel director and defect configurations. We uncover surprising aspects regarding the scaling of surface-like elastic constants by studying morphological transitions of spherical nematic droplets. We exploit a monodomain- like configuration and the director arrangement in tactoids to shed light on the physics governing the nematic- biphasic transition of lyotropic chromonic liquid crystals. We also confine nematics to toroidal geometries with radial anchoring to delineate the coupling of geometry with the director configuration. Finally, the role of differential polarizability is demonstrated in the accurate determination of order parameters of liquid crystals.
  • Item
    The structural coloration mechanisms of Morpho butterfly wing scales
    (Georgia Institute of Technology, 2016-07-18) Liu, Chunzi
    Many bright colors in nature are generated by the optical effects of biological structures. These intricate structures, combined with the absorption and reflection effects of the chemical pigments within, provide the observed color with high visibility and some other startling optical properties. A prominent example comes from the iridescent colors observed on the wing scales of Morpho, a family of subtropical butterflies. Iridescent color refers to the color which changes with varying viewing angle. It is proposed that a layered structure alternating in refractive indices produces the observed colors on the butterfly wing scales, but this generalized idea does not explain some optical effects observed through a variety of methods. This research suggests that the structures in the lower lamina also contributes to the macroscopic optical effects. The observation methods used in this research include optical microscopy, spectroscopy, integrating sphere analysis, and scatterometry. The scatterometry visualizes the far field optical effects from all viewing angles simultaneously. Elementary explanations are proposed for the unexpected patterns observed in the experiments.
  • Item
    Application of polarized Raman spectroscopy for analysis of phase transitions and anisotropic behavior of soft condensed matter
    (Georgia Institute of Technology, 2012-01-17) Park, Min Sang
    The importance of soft matter research, as a major class of materials including liquid crystals, polymers, colloids, emulsions, and forms, is attributed to the behavior resemblances in each branch of soft matter responding to the external perturbations. Hence, one of the most required inquiries in soft matter physics is understanding how the structures with characteristic length scales evolve in response to external perturbations, and concomitant phase transitions. We have focused on adopting polarized Raman spectroscopy to probe phase transitions in soft materials consisting of anisometric components and the evolution of molecular orientational ordering as a complementary tool to other methodologies, but distinct in some respects. The primary task is quantifying the degree of molecular orientation, i.e., obtaining orientational order parameters, in liquid crystal (LCs) system. Thermal evolution of orientation degree in a hitherto elusive biaxial nematic (Nb) phase as well as a commonly known uniaxial nematic (Nu) phase were interrogated from the measurements of anisotropy in polarized Raman intensities. We demonstrated reliable and applicable method to quantify the orientation degree for systems possessing anisotropic ordering. We also addressed a strong potential of Raman spectroscopy that the changes of vibrational energy reflect the variations of intermolecular interactions and structural changes on the molecular level induced by phase transitions. As a subfield of soft matter, we characterized phase transitions and anisotropic ordering observed in an evaporating conjugated polymer solution and elucidated the mechanism of the entities undergoing phase transitions using mainly polarized Raman spectroscopy. In addition, we have shown that tracking Raman spectral changes can provide valuable information for understanding structure-property relations when the measurements of the evolution in physical properties are carried out simultaneously.
  • Item
    Colloidal gold nanorods, iridescent beetles and breath figure templated assembly of ordered array of pores in polymer films
    (Georgia Institute of Technology, 2008-11-05) Sharma, Vivek
    Water drops that nucleate and grow over an evaporating polymer solution exposed to a current of moist air remain noncoalescent and self-assemble into close packed arrays. The hexagonally close packed, nearly monodisperse drops, eventually evaporate away, leaving a polymer film, with ordered array of pores. Meanwhile, typical breath figures or dew that form when moist air contacts cold surfaces involve coalescence-assisted growth of highly polydisperse, disordered array of water drops. This dissertation provides the first quantitative attempt aimed at the elucidation of the mechanism of the breath figure templated assembly of the ordered arrays of pores in polymer films. The creation and evolution of a population of close packed drops occur in response to the heat and mass fluxes involved in water droplet condensation and solvent evaporation. The dynamics of drop nucleation, growth, noncoalescence and self-assembly are modeled by accounting for various transport and thermodynamic processes. The theoretical results for the rate and extent of evaporative cooling and growth are compared with experiments. Further, the dissertation describes a rich array of experimental observations about water droplet growth, noncoalescence, assembly and drying that have not been reported in the published literature so far. The theoretical framework developed in this study allows one to rationalize and predict the structure and size of pores formed in different polymer-solvent systems under given air flow conditions. While the ordered arrays of water drops present an example of dynamics, growth and assembly of spherical particles, the study on colloidal gold nanorods focuses on the behavior of rodlike particles. A comprehensive set of theoretical arguments based on the shape dependent hydrodynamics of rods were developed and used for centrifugation-assisted separation of rodlike particles from nanospheres that are typical byproducts of seed mediated growth of nanorods. Since the efficiency of shape separation is assessed using UV-Vis-NIR spectroscopy and transmission electron microscopy (TEM), the present dissertation elucidates the shape dependent parameters that affect the optical response and phase behavior of colloidal gold nanorods. The drying of a drop of colloidal gold nanorods on glass slides creates coffee ring like deposits near the contact line, which is preceded by the formation of a liquid crystalline phase. The assemblies of rods on TEM grids are shown to be the result of equilibrium and non-equilibrium processes, and the ordered phases are compared with two dimensional liquid crystals. The methodology of pattern characterization developed in this dissertation is then used to analyze the structure of the exocuticle of iridescent beetle Chrysina gloriosa. The patterns were characterized using Voronoi analysis and the effect of curvature on the fractions on hexagonal order of tiles was determined. Further, these patterns were found to be analogous to the focal conic domains formed spontaneously on the free surface of a cholesteric liquid crystal. In summary, the dissertation provides the crucial understanding required for the widespread use of breath figure templated assembly as a method for manufacturing porous films, that requires only a drop of polymer solution (dilute) and a whiff of breath! Further, the dissertation establishes the physical basis and methodology for separating and characterizing colloidal gold nanorods. The dissertation also suggests the basis for the formation and structure of tiles that decorate the exoskeleton of an iridescent beetle Chrysina gloriosa.
  • Item
    Synthesis, Characterization, and Self-Assembly of Size Tunable Gold Nanorods
    (Georgia Institute of Technology, 2006-11-20) Park, Kyoungweon
    The successful applications of nanoparticles require the ability to tune their properties by controlling size and shape at the nanoscale. In metal nanomaterial research, the optical properties have been of interest especially because of the applications to medical diagnostics and nanooptics. It is important to prepare nanoparticles of well-defined shape and size for properly characterizing the optical properties. We describe improved seed mediated synthesis of gold nanorods (GNRs) producing a high yield of NRs with low polydispersity and few byproducts. The efficient separation of GNRs from mixture of shapes is achieved by understanding the hydrodynamics of nanoparticles undergoing centrifugation. The optical properties of resulting refined GNRs are compared to predictions of existing theories, and the main parameters affecting them are discussed. GNRs with well defined aspect ratios are introduced into a polyvinyl alcohol matrix by means of solution-casting techniques. The film is drawn to induce the uniaxial alignment of GNRs to be used as color polarizing filters. We prepare GNR polarizing filter with different peak positions ranging from visible to near infra red by using different aspect ratio of NRs. To utilize GNRs to make nanoscale devices, spatial organization is required. We characterize the self-assembly of GNRs observed on a TEM grid. The drying process is accompanied by complex hydrodynamic and thermodynamic events, which create rich range of patterns observed. Being anisotropic in shape, the rods can form liquid crystal (LC) assemblies above a certain concentration. We observed LC phase of GNRs by resorting to an evaporation of aqueous NR solution. The convective flow caused by the solvent evaporation carries NRs from the bulk solution to solid-liquid-air interface, which makes the solution locally very concentrated driving the phase transition of NRs. We calculate the order parameter from various assemblies observed, and compare the observed phase behavior to the one expected on the basis of theory.
  • Item
    Studies on Inclusion Complexes of Cyclodextrin and Dyes; I.Synthesis and Properties of Dye Rotaxanes, II. Formation of Anisotropic Supremolecules
    (Georgia Institute of Technology, 2005-08-26) Park, Jong Seung
    Supramolecular chemistry covers intermolecular interactions where non-covalent bonds are involved, and many of them are based on host-guest interactions. Cyclodextrins (CDs) are cyclic oligosaccharides consisting of 6-, 7- or 8-glucose units, which are called alpha-, beta- or gamma-CDs, respectively. They have hydrophobic interior and hydrophilic exterior, and are widely being used as hosts for various organic molecules. The formation of CD inclusion complexes with a variety of dyes has continuously drawn our interests, since CDs are readily available and have ability to include dye molecules altering their properties. The present thesis covers the study of inclusion complexes of CDs and chromophore dyes, largely in two ways; rotaxane and pseudorotaxane. The stable rotaxane structure is achieved with the synthesis of dye rotaxane. The introduction of CD ring around azo chromophore provides a simple way to improve the solubility and stability of azo dye. We have shown that by incorporating proper compounds as a coupler, azo dye rotaxanes can be used as pH indicators and metal ion sensors. We have described the synthesis of novel acetylene dye rotaxane using the Pd-catalyzed reaction of Heck-Cassar-Sonogashira-Hagihara type. Its fluorescence properties in the solid state as well as in solutions are examined and compared with those of free dye. Free dye, which has tetra-carboxylic groups, is found to be highly sensitive to various metal ions, exhibiting high Stern-Volmer constants, K(SV). On the contrary, acetylene dye rotaxane exhibits much less quenching against various quenchers. The appearance of fluorescent anisotropic structure has been observed by the formation of inclusion complex between acetylene dye and gamma-CD. Its structural nature is studied by various techniques, including fluorescence, fluorescence anisotropy, wide angle X-ray scattering (WAXD) and differential scanning calorimetry (DSC) measurements. Methyl orange, an acid azo dye, forms a dimeric inclusion complex with gamma-CD, resulting in the formation stable anisotropic aggregates. Several other azo dyes are found to form anisotropic supramolecule in the presence of gamma-CD, and their structural characteristic has been discussed in terms of the number and position of solubilizing groups.
  • Item
    Study of Ordered Macroporous Polymer Films by Templating Breath Figures
    (Georgia Institute of Technology, 2005-01-17) Song, Lulu
    Study of Ordered Macroporous Polymer Films by Templating Breath Figures Lulu Song 193 pages Directed by Dr. Mohan Srinivasarao Macroporous films with highly ordered pore patterns have many potential applications. Some examples include microstructured electrode surfaces, photonic band gap materials and filters for cell sorting and bio-interfaces. In this dissertation we discuss a moist-casting method to prepare hexagonally-ordered macroporous films with pore sizes in the range of sub-micron to several microns, where condensed water droplets (breath figures) work as templates. Compared with other templating methods, this one is fast and simple. Well-ordered porous films can be obtained in tens of seconds and the pore size can be easily tailored and dynamically controlled by adjusting the casting conditions. More importantly, there is no need to remove the templates; water droplets just evaporate when the casting processes are finished. This study was carried out with the intention of characterizing the structures, understanding film-formation processes and exploring special properties and possible applications. For the structural characterization, film morphology was studied in detail by normal optical microscopy and laser scanning confocal microscopy (LSCM). Several interesting features have been revealed. Meanwhile, the degree of the order of the porous structures were characterized both in real space via Voronoi diagram and bond-orientational correlation function, and in reciprocal space via Fraunhofer diffraction pattern. To further understand the mechanism, the evaporation of the polymer solutions during the film formation was studied by monitoring their mass over time. Besides, the evolution of breath figures formed on the evaporating polymer solutions was in-situ recorded via a high-speed camera coupled to an optical microscope. Combined with the information on the film structures obtained via LSCM, explanations for some detailed features have been attempted. Wetting property of these films was studied in some detail. The films exhibited lotus effect, mimicking natural non-wetting surfaces. To improve the solvent stability and mechanical properties of the macroporous films for possible applications, crosslinking of the polymer matrix was tried by heating. Crosslinked structures with hexagonal arrays of cone-like air holes were obtained, which might find use as micron-sized beakers for small-quantity analysis.
  • Item
    Anchoring Behavior of Chiral Liquid Crystal at Polymer Surface: In Polymer Dispersed Chiral Liquid Crystal Films
    (Georgia Institute of Technology, 2004-04-13) Wu, Haixia
    Chiral Liquid Crystals (CLCs) can selectively reflect light of a specific wavelength when the period of its helically twisted structure is appropriately chosen and white light propagates along the helical axis. This phenomenon makes CLCs attractive for reflective-color display, without the needs of backlighting, polarizers, or color filters. Polymer Dispersed Chiral Liquid Crystals (PDCLC) have been developed for reflective switchable, bistable color display. However they suffer from high external driving voltage, low reflectivity, and high cost in pretreatment of the substrates. The key to solve these problems is to understand and control the anchoring behavior of CLC at a polymer surface. This research has two purposes: to develop PDCLC films with high reflectivity and to investigate the factors affecting the anchoring behavior of CLC at the polymer surface of the film. Specifically, commercially available chiral dopant and nematic liquid crystals were carefully chosen to formulate the CLCs reflecting different color. These CLCs are mixed with various acrylate and methacrylate monomers respectively, and UV cured at varied conditions to obtain PDCLC films. The anchoring behavior of these films is characterized using polarized optical microscopy, confocal microscopy, and microscopic-spectrophotometer. The factors influencing the anchoring behavior include chemical structure of the monomers, effective diameter of individual cells in PDCLC, thickness of individual cells in PDCLC, and the pitch of CLC, among which the chemical structure of the monomers is the most important. The PDCLC film made with n-hexyl methacrylate is found to selectively reflect light with the reflectivity larger than that of pure CLC with the same pitch.
  • Item
    Study of Anchoring Behavior of Nematic Fluids at The Interface of Polymer-Dispersed Liquid Crystals
    (Georgia Institute of Technology, 2003-12-15) Zhou, Jian
    A liquid crystal (LC) at its boundary surface adopts a preferential alignment, which is referred to as anchoring. The direction of this alignment (i.e., anchoring direction) may be perpendicular, parallel or tilted with respect to the surface. Transitions from one anchoring condition to another may occur when the parameters (e.g., temperature) charactering the surface change, as referred to as anchoring transitions. In the LC-polymer composite systems under our study, the anchoring and temperature- driven anchoring transitions of nematic fluids is very sensitive to the structure of the side chain of poly (alkyl acrylate) matrixes that encapsulate the LC. We have shown that the anchoring transition temperature of these systems can be tuned far below the nematic-to-isotropic transition temperature, by varying either the length, branching structure of the side chains of homopolymers, or the composition of copolymer of two dissimilar monomers. Both sharp and broad anchoring transitions with respect to the temperature range over which a transition occurs were observed. It is postulated that microscopic interactions between the polymer side chains and LC molecules play an important role in determining the anchoring. In particular, the conformation of the polymer side chain is proposed to have important control over the anchoring. Anchoring strength and tilt angle as a function of temperature during the anchoring transitions were also experimentally investigated, which contribute to understanding of the microscopic mechanism for such transitions. Based on the LC-polymer composites with controlled anchoring, a LC display with reverse switching mode and a novel electrically switchable diffraction grating have been demonstrated. The advantages of these devices are ease of manufacturing, low operation voltage, and mechanical stability offered by polymer matrix. Moreover, a detailed study of the director configuration of wall defects found in these composite films was carried out using fluorescence confocal polarized microscopy.