Title:
Studies on Inclusion Complexes of Cyclodextrin and Dyes; I.Synthesis and Properties of Dye Rotaxanes, II. Formation of Anisotropic Supremolecules

Thumbnail Image
Author(s)
Park, Jong Seung
Authors
Advisor(s)
Srinivasarao, Mohan
Bunz, Uwe H. F.
Advisor(s)
Editor(s)
Associated Organization(s)
Series
Supplementary to
Abstract
Supramolecular chemistry covers intermolecular interactions where non-covalent bonds are involved, and many of them are based on host-guest interactions. Cyclodextrins (CDs) are cyclic oligosaccharides consisting of 6-, 7- or 8-glucose units, which are called alpha-, beta- or gamma-CDs, respectively. They have hydrophobic interior and hydrophilic exterior, and are widely being used as hosts for various organic molecules. The formation of CD inclusion complexes with a variety of dyes has continuously drawn our interests, since CDs are readily available and have ability to include dye molecules altering their properties. The present thesis covers the study of inclusion complexes of CDs and chromophore dyes, largely in two ways; rotaxane and pseudorotaxane. The stable rotaxane structure is achieved with the synthesis of dye rotaxane. The introduction of CD ring around azo chromophore provides a simple way to improve the solubility and stability of azo dye. We have shown that by incorporating proper compounds as a coupler, azo dye rotaxanes can be used as pH indicators and metal ion sensors. We have described the synthesis of novel acetylene dye rotaxane using the Pd-catalyzed reaction of Heck-Cassar-Sonogashira-Hagihara type. Its fluorescence properties in the solid state as well as in solutions are examined and compared with those of free dye. Free dye, which has tetra-carboxylic groups, is found to be highly sensitive to various metal ions, exhibiting high Stern-Volmer constants, K(SV). On the contrary, acetylene dye rotaxane exhibits much less quenching against various quenchers. The appearance of fluorescent anisotropic structure has been observed by the formation of inclusion complex between acetylene dye and gamma-CD. Its structural nature is studied by various techniques, including fluorescence, fluorescence anisotropy, wide angle X-ray scattering (WAXD) and differential scanning calorimetry (DSC) measurements. Methyl orange, an acid azo dye, forms a dimeric inclusion complex with gamma-CD, resulting in the formation stable anisotropic aggregates. Several other azo dyes are found to form anisotropic supramolecule in the presence of gamma-CD, and their structural characteristic has been discussed in terms of the number and position of solubilizing groups.
Sponsor
Date Issued
2005-08-26
Extent
3820608 bytes
Resource Type
Text
Resource Subtype
Dissertation
Rights Statement
Rights URI