Organizational Unit:
School of Materials Science and Engineering

Research Organization Registry ID
Description
Previous Names
Parent Organization
Parent Organization
Organizational Unit
Includes Organization(s)

Publication Search Results

Now showing 1 - 10 of 21
  • Item
    Development and control of strength anisotropy and crystallographic texture during extrusion of aluminum 2195 and 7075
    (Georgia Institute of Technology, 2017-07-17) Dickson, Judith Marie
    The addition of lithium to high strength aluminum alloys significantly improves specific strength. Indeed, for aerospace applications, the third generation Al-Cu-Li alloy, Al 2195, is competitive with composite materials. However, unlike its non-lithium containing counterpart, Al 7075, it suffers from undesirable anisotropic mechanical properties in low aspect ratio extruded sections. To investigate the origins of this anisotropy, Al 2195 and Al 7075 were systematically extruded over a range of aspect ratios from 2-15 while maintaining a constant extrusion ratio. This study found that the interaction of high volume fractions of the Copper crystallographic texture with the strengthening precipitates in Al 2195 is responsible for the poor mechanical performance in low aspect ratio regions. Through a series of rolling studies, a higher initial billet temperature and a slower ram speed were hypothesized to minimize the Copper texture component in extruded Al 2195. As press trials are often cost prohibitive and lead to convoluted results due to imperfect press repeatability, the effects of extrusion press parameters on the final microstructure and properties would ideally be studied via simulations. However, it was found that the commercially available finite element software, HyperXtrude, was not able to predict the effects of press parameters on mechanical anisotropy. It was therefore recommended that the Barlat Method for prediction of anisotropic yield strengths be integrated into the HyperXtrude solver to allow for future computational parametric studies on the effects of extrusion variables on final strength anisotropy in extruded aluminum alloys.
  • Item
    Implementing the materials genome initiative: Best practice for developing meaningful experimental data sets in aluminum-zinc-magnesium-copper alloys
    (Georgia Institute of Technology, 2016-04-11) Goulding, Ashley Nelson
    The Materials Genome Initiative was announced by the White House in June of 2011, and is a multi-agency initiative which calls the materials community to find ways to discover, develop, manufacture, and deploy advanced materials systems faster and more cost-efficiently. Currently, the amount of time it takes to discover and develop a new material system, optimize its properties, integrate it in to a system, certify that system, and develop the manufacturing capability so that it can be deployed in a commercial component takes at least 20 years. Since this trend holds regardless of the material system in question, the implication is that it is the process by which we as a community move through these seven steps, which causes the lengthy timeline. Historically, the discovery, development, and property optimization of a material system relies heavily on deep scientific knowledge, intuition and trial-and-error physical experimentation. Therefore much of the design and testing of materials in these early stages is currently performed through time-consuming and repetitive experimental and characterization feedback loops. Some of these feedback loops could be eliminated in the property optimization step with improved powerful and accurate computational modeling tools. However, while the ability of computational models to be used in this way is not new, models that have been developed in this space have consistently underperformed. Oftentimes, these models fail because they fail to accurately account for the various physical and chemical mechanisms that are driving the system, or because they fail to account for all of the variables which must be included. Here we propose a standard method of communication for these relationships in the form a process-structure-property-performance map, which leverages the known knowledge database of the material system to clearly and visually communicate the relevant variables and their various relationships in a defined materials design space. Such a map is developed here for high-strength Al-Zn-Mg-Cu alloys, which offer a good example of a material system which could benefit from such a standard. This class of alloys, which are typically utilized in aircraft components, have been incorporated in commercial components for nearly 75 years, and due to its long history is a well characterized and well developed system that is highly suited to this kind of examination. In Part I of this work, we develop this standard by first examining the known knowledge database in this system to deduce what the important process, microstructure, and mechanical property variables are that are of interest. Once these variables and the relationships between them are identified, they are organized into a PSPP map according to a proposed set of steps, and can act as a visual standard that can clearly communicate critical information about the mechanisms of the system. For example, if a model developed within this system does not include a variable or a mechanism depicted within the map, it can be used to communicate the ways in which the model will be constrained. Similarly, when experimental data is collected within this space the map can be used to clearly communicate which variables in the space were held constant, which variables were tracked and accurately measured, and if any variables were unaccounted for. This information can help to communicate what situations the data can be used in, and how the space that the experimental data can be used in is constrained. In Part II of this work, we vary multiple parameters within the high-strength Al-Zn-Mg-Cu system defined in Part I, and attempted to track and measure as many of the variables within the space as possible using commonly available testing and characterization methods. In tackling such a large project in the complicated materials system of high-strength wrought Al-Zn-Mg-Cu alloys, we are able to understand which current testing and characterization methods are well suited to tracking these variables when the number of test specimens becomes quite large and when variability among those specimens is involved. We are also able to identify opportunities for future work in this area, which could be focused on improving our ability to implement projects of the scope that is required here. In addition to evaluating the feasibility of the various measurement and characterization methods, the raw data and the analyzed results for this work are cataloged in an associated data repository and have been made available for use in future work in this and other areas.
  • Item
    Decomposition and its effects on mechanical properties in Al-Zn-Mg-Cu alloys
    (Georgia Institute of Technology, 2016-01-12) Lamb, Justin
    The effects of variations in composition on the decomposition process in Al-Zn-Mg-Cu alloys (i.e. – 7xxx-series aluminum alloy) were studied emphasizing their effect on mechanical properties. Several experimental quaternary alloys were studied to compare their behavior with commercial 7xxx-series alloys. The investigation included studies on the effects of natural aging, artificial aging, quench sensitivity, precipitate free zone formation, and homogenization. Additionally, “true aging” curves (i.e. – hardness/strength vs. conductivity) were presented in order to visualize and quantify the entire precipitation process. It is obvious that fluctuations in the main alloying elements/processing parameters can alter the precipitation process, but the purpose of this work was to quantify those changes using standard industrial techniques. It was found that natural aging was detrimental for strength in the T6 temper for alloys containing more than 1.0 wt.% Cu, and was shown to alter the coarsening kinetics in the over-aged condition (T7). Conversely, for alloys with Cu contents less than 0.5% natural aging was shown to be beneficial for strength. Altering the Zn:Mg ratio was also shown to effect natural aging response of an alloy in addition to introducing additional precipitation processes (T-phase). Therefore, this work is a blueprint for advanced alloy manufacturing that allows for the rapid production of new alloys and tempers by narrowing the research focus depending on an alloy’s composition.
  • Item
    Effects of microstructure on the spall behavior of aluminum-magnesium alloys
    (Georgia Institute of Technology, 2014-04-03) Whelchel, Ricky L.
    This research focuses on the spall properties of aluminum-magnesium (Al-Mg)alloys.Aluminum alloy 5083 (Al 5083) was used as a model alloy for the work performed in this study. Al-Mg alloys represent a light-weight and corrosion resistant alloy system often used in armor plating. It is desirable to process armor plate material to yield a microstructure that provides maximum resistance to spall failure due to blast and projectile impacts. The blast and impact resistance has often been quantified based on the measurement of the spall strength and the Hugoniot elastic limit (HEL). The spall properties of Al-Mg alloys were measured for four different microstructural states resultant from varying processing conditions. The four microstructures include: (a) textured grain structure from a rolled Al 5083-H116 plate, (b) sub-micron grain structure produced using equi-channel angular pressing (ECAP),(c) equiaxed grain structure, and (d) precipitation hardened microstucture from an Al-9wt.% Mg alloy. The overall results show that grain size is not the most dominant microstructural feature affecting spall strength in aluminum alloys, when the impact conditions are the same. Texture, especially if brittle inclusions align along the grains, appears to have the most dominant effect resulting in decreased spall strength. Furthermore, one-dimensional modeling shows that the inclusion size and distribution is the controlling factor for void formation during spalling. Grain size does affect the decompression rate dependence of each microstructure, whereby smaller grain sizes result in a larger power law exponent for fits of spall strength versus decompression rate. Unlike the spall strength, the HEL shows an increasing trend with decreased grain size, as would be expected from a Hall-Petch type effect, indicating that a smaller grain size is best for penetration resistance. Samples processed using ECAP alone provide the best combination of spall strength and HEL and therefore the most promise for improved blast and penetration resistance of aluminum-magnesium alloy armor plates.
  • Item
    Using FDM and FEM to simulate the decarburization in AISI 1074 during heat processing and its impact
    (Georgia Institute of Technology, 2011-05-19) Quan, Liang
    The metallurgical processes and the products developed from these processes have been the cornerstone on which our civilizations have developed and flourished. Many of the new materials that have been developed over centuries were often the result of serendipitous occurrences. Because of the importance of new materials to the improvement of society, it is necessary to accelerate the way in which new alloys and processes are designed, developed and implemented. Over the last two decades the computational side of materials science has thrived as a result of bigger and faster computers. However, the application of new computational methods to the development of new materials and structures is still in the early stages primarily because of the complexity of most metallurgical processes. One such process is the decarburization of steel. Because of the importance of the microstructure on the mechanical properties, changes in the near surface properties are affected by the loss of carbon in the alloy. The topics investigated in this thesis include a variety of alloys and microstructures that are considered to be important in the development of a unique structure necessary for a more efficient method of recovering natural gas and oil from underground reserves as well as structures for energy absorbing systems. Since both the material application and the structure are new, this research represents an ideal opportunity to combine processing, properties, microstructure and computations to accelerate the development of these new structures. Compared to other commercially available proppants which tend to fail in demanding environments, the thin-walled hollow metal proppants are regarded more promising due to the low density and high mechanical strength. The energy-absorbing composite material manufactured by embedding said spheres in the Mg/Al matrix material is optimized by improving sphere and matrix properties at each step in the process. Ultimately the mechanical strength, fracture toughness, and energy absorption are expected to achieve a factor of 2-5 higher than previously reported. Modeling makes it economically practical to assess the targeted materials' overall properties, behaviors and the mechanical responses in conjunction with stress environment, material properties, material dimensions among other variables, before a structure is built. Additionally, more advanced modeling can enable the quantitative descriptions of more complex metallurgical phenomena such as the effects of impurity elements and deformation under complex loading conditions.
  • Item
    The fabrication of thin-walled steel alloys through the gas carburization of reduced metal oxide extrusions
    (Georgia Institute of Technology, 2010-04-26) Cerully, Laura B.
    Investigations of the production of thin-walled steel alloys through the reduction and subsequent gas carburization of structures made from metal oxide powders were performed. Batch compositions, as well as the heat treatment parameters necessary for the formation of structures were determined through the use of thermogravimetric analysis, dilatometric measurements, and microstructural investigation. Parameters for the high temperature carburization of thin-walled 4140 structures were determined. The research has shown that the amount of carbon in the walls of the structures can be controlled and uniform carbon contents across the cross-sections can be achieved in less than 30 minutes. Heat treatments for carburized samples were performed and subsequent microhardness testing resulted in values similar to conventionally produced 4140 steel. Studies on the decarburization behavior of similar alloys under various conditions were also performed in order to aid in the prediction of the microstructural behavior of samples during carburization and subsequent heat treatment. Low temperature gas carburization of structures with 316 steel composition has also been performed. Hardness variations present through the cross-section of the part after carburization suggest some transfer of carbon, though contents are not as high as anticipated. Suggestions for future work in this area are presented. The results of these investigations yield a novel method for the production of steel parts from metal oxide powders. The speed and low cost of the process, coupled with the proven ability of the process to yield parts with similar microstructural and mechanical characteristics as conventionally made alloys, allows for the techniques presented in this study to be used for the development of alloys which could not be previously done economically.
  • Item
    Solution-based synthesis and processing of nanocrystalline ZrB₂-based composites
    (Georgia Institute of Technology, 2008-11-24) Xie, Yanli
    Zirconium- and tantalum-based diborides, and diboride/carbide composites are of interest for ultra-high temperature applications requiring improved thermomechanical and thermochemical stability. This thesis focuses on the synthesis, processing and sintering of nanocrystalline powders with Zr- and Ta-based diboride/carbide/silicide compositions. A solution-based processing method was developed to prepare reactive mixtures that were precursors for ZrB₂-based powders. The precursors reacted to form the ceramic powders after suitable pyrolysis and borothermal/carbothermal reduction heat treatments. Single-phase ZrB₂ powders were prepared with initial composition of C/Zr = 4.8 and B/Zr = 3.0. ZrB₂-based composite powders with ZrC, ZrO₂, TaB₂, TaC, SiC, TaSi₂ and B₄C were prepared with particle sizes of 10-500 nm for different phases based SEM micrographs. The composite powders were highly sinterable with proper processing methods developed to avoid and remove oxide impurities. The relative densities of ZrB₂/B₄C, ZrB₂/TaB₂, ZrB₂/TaB₂/B4C, ZrB₂/TaSi₂ were in the range of 91%-97% after pressureless sintering at 2020 ℃ for 1 h or 30 min.
  • Item
    Extension of the master sintering curve for constant heating rate modeling
    (Georgia Institute of Technology, 2008-01-15) McCoy, Tammy Michelle
    The purpose of this work is to extend the functionality of the Master Sintering Curve (MSC) such that it can be used as a practical tool for predicting sintering schemes that combine both a constant heating rate and an isothermal hold. Rather than just being able to predict a final density for the object of interest, the extension to the MSC will actually be able to model a sintering run from start to finish. Because the Johnson model does not incorporate this capability, the work presented is an extension of what has already been shown in literature to be a valuable resource in many sintering situations. A predicted sintering curve that incorporates a combination of constant heating rate and an isothermal hold is more indicative of what is found in real-life sintering operations. This research offers the possibility of predicting the sintering schedule for a material, thereby having advanced information about the extent of sintering, the time schedule for sintering, and the sintering temperature with a high degree of accuracy and repeatability. The research conducted in this thesis focuses on the development of a working model for predicting the sintering schedules of several stabilized zirconia powders having the compositions YSZ (HSY8), 10Sc1CeSZ, 10Sc1YSZ, and 11ScSZ1A. The compositions of the four powders are first verified using x-ray diffraction (XRD) and the particle size and surface area are verified using a particle size analyzer and BET analysis, respectively. The sintering studies were conducted on powder compacts using a double pushrod dilatometer. Density measurements are obtained both geometrically and using the Archimedes method. Each of the four powders is pressed into 1/4 inch diameter pellets using a manual press with no additives, such as a binder or lubricant. Using a double push-rod dilatometer, shrinkage data for the pellets is obtained over several different heating rates. The shrinkage data is then converted to reflect the change in relative density of the pellets based on the green density and the theoretical density of each of the compositions. The Master Sintering Curve (MSC) model is then utilized to generate data that can be utilized to predict the final density of the respective powder over a range of heating rates. The Elton Master Sintering Curve Extension (EMSCE) is developed to extend the functionality of the MSC tool. The parameters generated from the original MSC are used in tandem with the solution to a specific closed integral (discussed in document) over a set range of temperatures. The EMSCE is used to generate a set of sintering curves having both constant heating rate and isothermal hold portions. The EMSCE extends the usefulness of the MSC by allowing this generation of a complete sintering schedule rather than just being able to predict the final relative density of a given material. The EMSCE is verified by generating a set of curves having both constant heating rate and an isothermal hold for the heat-treatment. The modeled curves are verified experimentally and a comparison of the model and experimental results are given for a selected composition. Porosity within the final product can hinder the product from sintering to full density. It is shown that some of the compositions studied did not sinter to full density because of the presence of large porosity that could not be eliminated in a reasonable amount of time. A statistical analysis of the volume fraction of porosity is completed to show the significance of the presence in the final product. The reason this is relevant to the MSC is that the model does not take into account the presence of porosity and assumes that the samples sinter to full density. When this does not happen, the model actually under-predicts the final density of the material.
  • Item
    The Relationship of Microstructure to Fracture and Corrosion Behavior of a Directionally Solidified Superalloy
    (Georgia Institute of Technology, 2006-12-18) Trexler, Matthew David
    SUMMARY GTD-111 DS is a directionally solidified superalloy currently used in turbine engines. To accurately predict the life of engine components it is essential to examine and characterize the microstructural evolution of the material and its effects on material properties. The as-cast microstructure of GTD-111 is highly inhomogeneous as a result of coring. The current post-casting heat treatments do not effectively eliminate the inhomogeneity. This inhomogeneity affects properties including tensile strength, fracture toughness, fracture path, and corrosion behavior, primarily in terms of the number of grains per specimen. The goal of this work was to link microstructural features to these properties. Quantitative fractography was used to determine that the path of cracks during failure of tensile specimens is influenced by the presence of carbides, which are located in the interdendritic regions of the material as dictated by segregation. The solvus temperature of the precipitate phase, Ni3(Al, Ti), was determined to be 1200C using traditional metallography, differential thermal analysis, and dilatometry. A heat-treatment was designed to homogenize the microstructure for tensile testing that isolates the carbide by dissolving all of the eutectic Ni3(Al, Ti) precipitate phase, which is also found in the interdendritic areas. High temperature oxidation/sulfidation tests were conducted to investigate the corrosion processes involved when GTD-111 DS is utilized in steam and gas combustion turbine engines. The kinetics of corrosion in both oxidizing and sulfidizing atmospheres were determined using thermogravimetric analysis. Additionally, metallography of these samples after TGA revealed a correlation between the presence of grain boundaries and sulfur attack, which led to catastrophic failure of the material under stress-free conditions in a sulfur bearing environment. In summary, this work correlates the inhomogeneous microstructure of GTD-111 DS to tensile fracture, and the corrosion process in turbine engines.
  • Item
    Processing of a Hybrid Solid Oxide Fuel Cell Platform
    (Georgia Institute of Technology, 2006-01-09) Oh, Raymond H.
    Solid oxide fuel cell platforms consisting of alternating cellular layers of yttria-stabilized zirconia electrolyte and Fe-Ni metallic interconnects (Fe45Ni, Fe47.5Ni, Fe50Ni) were produced through the co-extrusion of two particulate pastes. Subsequent thermal treatment in a hydrogen atmosphere was used to reduce iron and nickel oxides and co-sinter the entire structure. Issues surrounding this process include the constrained sintering of the layers and the evolution of residual stress between the dense, fired layers. Sintering curves for individual components of the layers were measured by dilatometry to ascertain each materials impact on overall sintering mismatch. X-ray diffraction, scanning electron microscopy and weight loss were utilized to examine phase evolution within the Fe-Ni alloys during reduction. YSZ powders densified above ~1050C and shrinkage was rapid above the sintering temperature. Shrinkage of the interconnect occurred in two stages: reduction and the initial stages of sintering concluded around ~600C, plateauing shortly and continuing at ~900C as pore removal and grain growth ensued simultaneously. Constrained sintering resulted in the formation of remnant porosity within the interconnect layers. Interconnect compositions were chosen in efforts to minimize disparities in thermal expansion with the electrolyte. Residual strains on the surfaces of the layers were measured by x-ray diffraction. Corresponding stresses were calculated using the sin2y method. Grain growth within the interconnect prohibited random planes to be measured so stress measurements were confined to the ceramic layers. Various material properties such as thermal expansion were collected and employed in a modified finite element model to estimate residual stresses in the platform. A method for determining a crucial parameter, the zero stress temperature was outlined and incorporated. Modeled values were found to agree well with XRD values, providing indirect confirmation of the zero stress temperature calculations. Discrepancies were attributed to microcracks found within the layer that arose due to residual stress values surpassing the tensile strength of the zirconia.