Series
Doctor of Philosophy with a Major in Aerospace Engineering

Series Type
Degree Series
Description
Associated Organization(s)
Associated Organization(s)

Publication Search Results

Now showing 1 - 10 of 47
  • Item
    Development of a Sonic Sensor for Aircraft Applications
    (Georgia Institute of Technology, 2021-12-14) Carroll, Jonathan D.
    The field of aeroacoustics has been an area of constant research over the past six decades. Acoustic waves have some special characteristics that allow for heating, cooling, and even active flow control over airfoil shapes using synthetic jets and other methods. They can also be used to measure properties of the flow over an aircraft, including the free-stream pressure ratio, density ratio, and total temperature. The current measurement techniques to obtain these parameters applied to aircraft require a specific probe. It is desired to apply knowledge of acoustics to develop an aircraft sensor that can measure multiple flow properties with minimal impact to the flow field. Adding a sensor that can read total temperature, static temperature, airspeed, and angle of attack will have the added benefit of reducing the number of sensors sticking into the flow and may result in a reduction in failure mode analysis due to the minimization of the number of sensors on the aircraft. This work explores the applicability of sonic anemometry to aircraft for high subsonic and sonic speeds. A computational simulation is developed as a validation of the concept and low speed experiments are shown to validate the theory. This effort identifies the underlying issues associated with applying sonic anemometry to high-speed flows and provides methods to overcome them. This work investigates the use of phased array technology to increase the accuracy and applicability at the higher speeds and smaller footprints (lighter and fewer systems). Phased arrays use the constructive and destructive interference to boost and direct the desired signal, in this case, acoustic waves. These acoustic waves have been shown to provide haptic feedback and levitate small particles utilizing a relatively inexpensive ultrasonic phased array system. It is shown that the ultrasonic phased array overcomes the hydrodynamic noise to produce a strong signal for use in the calculation of the flow parameters up to the maximum speed tested. It is also shown that the signal is strong enough to produce consistent time delay estimations, via cross-correlation, with a 0.05 second sample time to integrate into modern air data systems.
  • Item
    Application of Extended Messinger Model for Ice Accretion on Complex Geometries
    (Georgia Institute of Technology, 2021-10-11) Gupta, Avani
    Ice accretion can significantly degrade the performance, stability, availability, and affordability of an airborne vehicle. It is imperative that this phenomenon be modeled accurately. While ice accretion studies have been performed on airplane wings, propellers, and helicopter blades, there are very few attempts to model the process on more complex geometries such as fuselages. In this study, an existing in-house Extended Messinger methodology is generalized for complex geometries by modeling the flow field and water droplet transport on unstructured grids, and carrying out the ice accretion calculations along surface streamlines. A general framework has been developed, allowing the use of two-dimensional and three-dimensional, structured, and unstructured, public domain and commercial CFD analyses. The methodology is primarily spilt into three steps: the continuum flow field analysis, the dispersed water phase computations, and the ice accretion module. In the present study, in-house methodologies as well as commercial solvers such as STAR-CCM+ and ANSYS Fluent have been used for the flow field and droplet dispersed phase computations. The in-house methodologies for the dispersed water droplet transport are done using an Eulerian approach, with a one-way interaction between the air flow and the dispersed phase via the drag force exerted on the droplets by the air flow. The ice accretion is carried out along surface streamlines, or optionally along two-dimensional section cuts, using an in-house icing methodology based on the Extended-Messinger model. The predictions from the present approach are compared to available experimental data, and predictions using other solvers such as LEWICE and STAR-CCM+. Several configurations with varying levels of complexity are modeled. These include 2-D airfoils, swept wings, and helicopter fuselage configurations. Time and space sensitivity studies have been done.
  • Item
    A PHYSICS-BASED MODEL FOR INFLOW CHARACTERISTICS OF MULTI-ROTOR CONFIGURATIONS
    (Georgia Institute of Technology, 2021-08-13) Chen, Po-Wei
    A physics-based model for modeling helicopter and autonomous rotor configurations, previously developed for isolated rotors and coaxial rotors in hover and forward flight, has been extended to more general multi-rotor configurations. Simulations for coaxial and tandem rotor configurations have been performed for a number of low and high Reynolds number configurations, and comparisons with test data have been made. The physics behind the rotor interactions has been explored through visualization and analysis of vortex wake structure and inflow velocity distributions. As part of this effort, a fast off-body velocity field analysis that employs GPU processors has been implemented. In addition to computation of inflow velocity field above or below the rotor disks, this approach is capable of rapidly computing and visualizing velocity field on any user specified plane. In many helicopter design studies, the adverse interactions caused by the main rotor wake should be considered in the placement of horizontal and vertical stabilizers, as well as the tail rotors and pusher-propulsors. This capability for rapid calculation and visualization of the off-body flow field would greatly aid the designers in the placement of these components. A previously developed algebraic transition model that regulates the magnitude of the production term in the Spalart-Allmaras one-equation turbulence model has been independently implemented in the present solver. In the present work, this model has been also validated for large scale rotors in hover.
  • Item
    A Unified Approach for Modeling Fluid-Structure Interactions of Large-Scale Offshore Wind Turbines
    (Georgia Institute of Technology, 2021-07-26) Pichitkul, Auraluck
    Wind turbine technology has grown over the past several decades and has been globally accepted as an economically viable form of renewable energy. Further development in size and power production of wind turbine demands continuous advances in the underlying technologies - aerodynamics, structures, engineering materials, aeroelasticity, electrical systems, mechanical and hydraulic control, and manufacturing. In this study, focus is placed on two aspects of these technologies – aerodynamics and structures – with the primary goal of economically and accurately predicting the power production of very large-scale flexible wind turbines. To fulfill the first objective, a loose-coupling technique relying on an in-house hybrid CFD solver, and an in-house Euler-Bernoulli CSD solver is developed and used in investigating aeroelastic behavior of a large-scale offshore wind turbine. A 5 MW wind turbine system developed by National Renewable Energy Laboratory (NREL) is analyzed. The aerodynamic loads predicted by GT-Hybrid and the elastic deformations computed by the CFD solver are exchanged using file I/O. The study shows that the NREL 5 MW rotor undergoes significant bending deformations, especially at rated wind speeds. The loss of performance, in terms of power production, should be accounted while performing analyses. To satisfy the second objective of exploring alternative design for large-scale offshore wind turbines, a biplane rotor concept proposed by Wirz, et. al. at the University of California Los Angeles is explored. The study shows that that biplane rotors, with a reduced chord, are effective in producing power comparable to conventional wind turbines at rated condition with considerable mass and cost savings.
  • Item
    Aerodynamics and aeroacoustic sources of a coaxial rotor
    (Georgia Institute of Technology, 2018-04-10) Schatzman, Natasha Lydia
    Vehicles with coaxial, contra-rotating rotor systems (CACR) are being considered for a range of applications, including those requiring high speed and operations in urban environments. Community and environmental noise impact is likely to be a concern in these applications. Design parameters are identified that effect the fundamental aerodynamics and fluid dynamic features of a CACR in hover, vertical, and edgewise flight. Particular attention is paid to those features affecting thickness, loading, blade vortex interaction (BVI), and high speed impulsive (HSI) noise. Understanding the fluid dynamic features is a precursor to studying the aeroacoustics of a coaxial rotor. Rotor performance was computed initially using Navier-Stokes solver with prescribed blade section aerodynamic properties, the results validated against generic experimental test cases. The fluid dynamics of blade interactions was simplified and broken into a 2-D blade crossing problem, with crossing locations and velocity fields from the rotor results. Two trains of 8 airfoils passing were simulated to understand the effects due to shed vorticity. The airfoils are displaced vertically by a distance equivalent to the typical spacing between the upper and lower rotors of a coaxial system. A 2D potential flow code and 2D OVERFLOW compressible-flow Navier-Stokes solver were used to investigate the complex coaxial rotor system flow field. One challenge of analyzing the CACR is the difficulty in envisioning all the possible interactions and their possible locations as flight conditions and rotor designs change. A calculation tool has been developed to identify time and location of blade overlap. The tool was then integrated with a wake aerodynamics model to identify locations and instances of upper rotor tip vortex interaction with a lower rotor blade. This tool enables rapid identification of different types of BVI based on relative rotor orientation. Specific aerodynamic phenomena that occur for each noise source relevant to CACR are presented, along with computational tools to predict these occurrences.
  • Item
    A new rotorcraft design framework based on reliability and cost
    (Georgia Institute of Technology, 2016-07-26) Scott, Robert C.
    Helicopters provide essential services in civil and military applications due to their multirole capability and operational flexibility, but the combination of the disparate performance conditions of vertical and cruising flight presents a major compromise of aerodynamic and structural efficiency. In reviewing the historical trends of helicopter design and performance, it is apparent that the same compromise of design conditions which results in rotorcraft performance challenges also affects reliability and cost through vibration and fatigue among many possible factors. Although many technological approaches and design features have been proposed and researched as means of mitigating the rotorcraft affordability deficit, the assessment of their effects on the design, performance, and life-cycle cost of the aircraft has previously been limited to a manual adjustment of legacy trends in models based on regression of historical design trends. A new approach to the conceptual design of rotorcraft is presented which incorporates cost and reliability assessment methods to address the price premium historically associated with vertical flight. The methodology provides a new analytical capability that is general enough to operate as a tool for the conceptual design stage, but also specific enough to estimate the life-cycle effect of any RAM-related design technology which can be quantified in terms of weight, power, and reliability improvement. The framework combines aspects of multiple design, cost, and reliability models – some newly developed and some surveyed from literature. The key feature distinguishing the framework from legacy design and assessment methods is its ability to use reliability as a design input in addition to the flight conditions and missions used as sizing points for the aircraft. The methodology is first tested against a reference example of reliability-focused technology insertion into a legacy rotorcraft platform. Once the approach is validated, the framework is applied to an example problem consisting of a technology portfolio and a set of advanced rotorcraft configurations and performance conditions representative of capabilities desired in near-future joint service, multirole rotorcraft. The framework sizes the different rotorcraft configurations for both a baseline set of assumptions and a tradespace survey of reliability investment to search for an optimum design point corresponding to the level of technology insertion which results in the lowest life-cycle cost or highest value depending on the assumptions used. The study concludes with a discussion of the results of the reliability trade study and their possible implications for the development and acquisition of future rotorcraft.
  • Item
    Dynamics of Harmonically Forced Nonpremixed Flames
    (Georgia Institute of Technology, 2016-04-19) Magina, Nicholas A
    This thesis describes the dynamics, both spatio-temporal and heat release, of harmonically excited non-premixed flames. Analytical, numerical, computational, and, experimental analyses were performed, along with combined analyses methods, to study excitation and evolution of wrinkles on the flame front. Explicit expressions for the dynamics were developed. Wrinkle convection at the mean axial flow speed, and wrinkle dissipation and dispersion were analytically identified in the Pe-->∞ and Pe>>1 limits, respectively. Altered inlet mixture fraction profiles and attachment point dynamics were shown to accompany axial diffusion effects. Some physical effects such as axial diffusion, forcing configuration, and anisotropic diffusion altered the wrinkle interference pattern/waveform characteristics, while others, such as confinement, dimensionality, and differential diffusion, altered the dynamics through modifying the mean flame location. Comparisons to established premixed flame dynamics were made throughout. Despite having similar space-time dynamics, the heat release dynamics of the two differed greatly, having different dominant contributions, as well as different asymptotic trends. Experimental results obtained validated previous findings as well as enabled advanced model development, revealing the importance of accurate mixture fraction field capture, particularly in the near burner exit region. Findings shed light onto model and predictive improvements for future works.
  • Item
    Development of a physics based methodology for the prediction of rotor blade ice formation
    (Georgia Institute of Technology, 2015-11-10) Kim, Jee Woong
    Modern helicopters, civilian and military alike, are expected to operate in all weather conditions. Ice accretion adversely affects the availability, affordability, safety and survivability. Availability of the vehicle may be compromised if the ice formation requires excessive torque to overcome the drag needed to operate the rotor. Affordability is affected by the power requirements and cost of ownership of the deicing systems needed to safely operate the vehicle. Equipment of the rotor blades with built-in heaters greatly increases the cost of the helicopter and places further demands on the engine. The safety of the vehicle is also compromised due to ice shedding events, and the onset of abrupt, unexpected stall phenomena attributable to ice formation. Given the importance of understanding the effects of icing on aircraft performance and certification, considerable work has been done on the development of analytical and empirical tools, accompanied by high quality wind tunnel and flight test data. In this work, numerical studies to improve ice growth modeling have been done by reducing limitations and empiricism inherent in existing ice accretion models. In order to overcome the weakness of Lagrangian approach in unsteady problem such as rotating blades, a water droplet solver based on 3-D Eulerian method is developed and integrated into existing CFD solver. Also, the differences between the industry standard ice accretion analyses such as LEWICE and the ice accretion models based on the extended Messinger model are investigated through a number of 2-D airfoil and 3-D rotor blade ice accretion studies. The developed ice accretion module based on 3-D Eulerian water droplet method and the extended Messinger model is also coupled with an existing empirical ice shedding model. A series of progressively challenging simulations have been carried out. These include ability of the solvers to model airloads over an airfoil with a prescribed/simulated ice shape, collection efficiency modeling, ice growth, ice shedding, de-icing modeling, and assessment of the degradation of airfoil or rotor performance associated with the ice formation. While these numerical simulation results are encouraging, much additional work remains in modeling detailed physics important to rotorcraft icing phenomena. Despite these difficulties, progress in assessing helicopter ice accretion has been made and tools for initial analyses have been developed.Modern helicopters, civilian and military alike, are expected to operate in all weather conditions. Ice accretion adversely affects the availability, affordability, safety and survivability. Availability of the vehicle may be compromised if the ice formation requires excessive torque to overcome the drag needed to operate the rotor. Affordability is affected by the power requirements and cost of ownership of the deicing systems needed to safely operate the vehicle. Equipment of the rotor blades with built-in heaters greatly increases the cost of the helicopter and places further demands on the engine. The safety of the vehicle is also compromised due to ice shedding events, and the onset of abrupt, unexpected stall phenomena attributable to ice formation. Given the importance of understanding the effects of icing on aircraft performance and certification, considerable work has been done on the development of analytical and empirical tools, accompanied by high quality wind tunnel and flight test data. In this work, numerical studies to improve ice growth modeling have been done by reducing limitations and empiricism inherent in existing ice accretion models. In order to overcome the weakness of Lagrangian approach in unsteady problem such as rotating blades, a water droplet solver based on 3-D Eulerian method is developed and integrated into existing CFD solver. Also, the differences between the industry standard ice accretion analyses such as LEWICE and the ice accretion models based on the extended Messinger model are investigated through a number of 2-D airfoil and 3-D rotor blade ice accretion studies. The developed ice accretion module based on 3-D Eulerian water droplet method and the extended Messinger model is also coupled with an existing empirical ice shedding model. A series of progressively challenging simulations have been carried out. These include ability of the solvers to model airloads over an airfoil with a prescribed/simulated ice shape, collection efficiency modeling, ice growth, ice shedding, de-icing modeling, and assessment of the degradation of airfoil or rotor performance associated with the ice formation. While these numerical simulation results are encouraging, much additional work remains in modeling detailed physics important to rotorcraft icing phenomena. Despite these difficulties, progress in assessing helicopter ice accretion has been made and tools for initial analyses have been developed.
  • Item
    Numerical investigation on the use of multi-element blades in vertical-axis wind turbines
    (Georgia Institute of Technology, 2015-01-12) Bah, Elhadji Alpha Amadou
    The interest in sustainable forms of energy is being driven by the anticipated scarcity of traditional fossil fuels over the coming decades. There is also a growing concern about the effects of fossil fuel emissions on human health and the environment. Many sources of renewable energy are being researched and implemented for power production. In particular, wind power generation by horizontal- and vertical-axis wind turbines is very popular. Vertical-axis wind turbines (VAWTs) have a relative construction simplicity compared to horizontal-axis wind turbines (HAWTs). However, VAWTs present specific challenges that may hinder their performance. For instance, they are strongly affected by dynamic stall. A significant part of the kinetic energy contained in the oncoming wind is lost in swirl and vortices. As a result, VAWTs have lower power production compared to HAWTs. First, the present work is aimed at the study of the aerodynamics of straight-bladed VAWTs (SB-VAWTs). Empirical calculations are conducted in a preliminary work. Then a two-dimensional double multiple streamtube (DMST) approach supported by a two-dimensional numerical study is implemented. The dynamic stall and aerodynamic performance of the rotor are investigated. A VAWT-fitted dynamic stall model is implemented. Computational fluid dynamics (CFD) simulations are conducted to serve as reference for the DMST calculations. This three-pronged approach allows us to efficiently explore multiple configurations. The dynamic stall phenomenon is identified as a primary cause of performance loss. The results in this section validate the DMST model as a good replacement for CFD analysis in early phase design provided that a good dynamic stall model is used. After having identify the primary cause of performance loss, the goal is to investigate the use to dual-element blades for alleviating the effect of dynamic stall, thereby improving the performance of the rotor. The desirable airfoil characteristics are defined and a parametric analysis conducted. In the present study the parameters consists of the size of the blade elements, the space between them, and their relative orientation. The performance of the rotor is calculated and compared to the baseline. The results highlight the preeminence of the two-element configuration over the single-element provided that the adequate parametric study is conducted beforehand. A performance enhancement is obtained over a large range of tip speed ratios. The starting characteristics and the operation stability are also improved. Finally, an economic analysis is conducted to determine the cost of energy and thus the financial viability of such a project. The Great Coast of Senegal is selected as site of operation. The energy need and sources of this region are presented along with its wind energy potential. The cost evaluation shows the economic viability by comparing the cost of energy to the current energy market prices.
  • Item
    Physics based prediction of aeromechanical loads for the UH-60A rotor
    (Georgia Institute of Technology, 2013-04-12) Marpu, Ritu Priyanka
    Helicopters in forward flight experience complex aerodynamic phenomena to various degrees. In low speed level flight, the vortex wake remains close to the rotor disk and interacts with the rotor blades to give rise to blade vortex interaction phenomena. In high speed flight, compressibility effects dominate leading to the formation of shocks. If the required thrust is high, the combination of high collective pitch and cyclic pitch variations give rise to three-dimensional dynamic stall phenomena. Maneuvers further exacerbate the unsteady airloads and affect rotor and hub design. The strength and durability of the rotor blades and hub components is dependent on accurate estimates of peak-to-peak structural loads. Accurate knowledge of control loads is important for sizing the expensive swash-plate components and assuring long fatigue life. Over the last two decades, computational tools have been developed for modeling rotorcraft aeromechanics. In spite of this progress, loads prediction in unsteady maneuvers which is critical for peak design loads continues to be a challenging task. The primary goal of this research effort is to investigate important physical phenomena that cause severe loads on the rotor in steady flight and in extreme maneuvers. The present work utilizes a hybrid Navier-Stokes/free-wake CFD methodology coupled to a finite element based multi-body dynamics analysis to systematically study steady level and maneuvering flight conditions. Computational results are presented for the UH-60A rotor for a parametric sweep of speed and thrust conditions and correlated with test data at the NFAC Wind Tunnel. Good agreement with test data has been achieved using the current methodology for trim settings and integrated hub loads, torque, and power. Two severe diving turn maneuvers for the UH-60A recorded in the NASA/Army Airloads Flight Tests Database have also been investigated. These maneuvers are characterized by high load factors and high speed flight. The helicopter experiences significant vibration during these maneuvers. Mean and peak-to-peak structural loads and extensive stall phenomena including an advancing side stall phenomena have been captured by the present analyses.