Series
GVU Technical Report Series

Series Type
Publication Series
Description
Associated Organization(s)
Associated Organization(s)
Organizational Unit

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    A Variational inference method for Switching Linear Dynamic Systems
    (Georgia Institute of Technology, 2005) Oh, Sang Min ; Ranganathan, Ananth ; Rehg, James M. ; Dellaert, Frank
    This paper aims to present a structured variational inference algorithm for switching linear dynamical systems (SLDSs) which was initially introduced by Pavlovic and Rehg. Starting with the need for the variational approach, we proceed to the derivation of the generic (model-independent) variational update formulas which are obtained under the mean field assumption. This leads us to the derivation of an approximate variational inference algorithm for an SLDS. The details of deriving the SLDS-specific variational update equations are presented.
  • Item
    Data Driven MCMC for Appearance-based Topological Mapping
    (Georgia Institute of Technology, 2005) Dellaert, Frank ; Ranganathan, Ananth
    Probabilistic techniques have become the mainstay of robotic mapping, particularly for generating metric maps. In previous work, we have presented a hitherto nonexistent general purpose probabilistic framework for dealing with topological mapping. This involves the creation of Probabilistic Topological Maps (PTMs), a sample-based representation that approximates the posterior distribution over topologies given available sensor measurements. The PTM is inferred using Markov Chain Monte Carlo (MCMC) that overcomes the combinatorial nature of the problem. In this paper, we address the problem of integrating appearance measurements into the PTM framework. Specifically, we consider appearance measurements in the form of panoramic images obtained from a camera rig mounted on a robot. We also propose improvements to the efficiency of the MCMC algorithm through the use of an intelligent data-driven proposal distribution. We present experiments t hat illustrate the robustness and wide applicability of our algorithm.