Series
GVU Technical Report Series

Series Type
Publication Series
Description
Associated Organization(s)
Associated Organization(s)
Organizational Unit

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    On the Design of Cascades of Boosted Ensembles for Face Detection
    (Georgia Institute of Technology, 2005) Brubaker, S. Charles ; Wu, Jianxin ; Sun, Jie ; Mullin, Matthew D. ; Rehg, James M.
    Cascades of boosted ensembles have become popular in the object detection community following their highly successful introduction in the face detector of Viola and Jones. Since then, researchers have sought to improve upon the original approach by incorporating new methods along a variety of axes (e.g. alternative boosting methods, feature sets, etc). We explore several axes that have not yet received adequate attention in this context: cascade learning, stronger weak hypotheses, and feature filtering. We present a novel strategy to determine the appropriate balance between false positive and detection rates in the individual stages of the cascade, enabling us to control our experiments to a degree not previously possible. We show that while the choice of boosting method has little impact on the detector's performance and feature filtering is largely ineffective, the use of stronger weak hypotheses based on CART classifiers can significantly improve upon the standard results.
  • Item
    Fast Asymmetric Learning for Cascade Face Detection
    (Georgia Institute of Technology, 2005) Wu, Jianxin ; Brubaker, S. Charles ; Mullin, Matthew D. ; Rehg, James M.
    A cascade face detector uses a sequence of node classifiers to distinguish faces from non-faces. This paper presents a new approach to design node classifiers in the cascade detector. Previous methods used machine learning algorithms that simultaneously select features and form ensemble classifiers. We argue that if these two parts are decoupled, we have the freedom to design a classifier that explicitly addresses the difficulties caused by the asymmetric learning goal. There are three contributions in this paper. The first is a categorization of asymmetries in the learning goal, and why they make face detection hard. The second is the Forward Feature Selection (FFS) algorithm and a fast caching strategy for AdaBoost. FFS and the fast AdaBoost can reduce the training time by approximately 100 and 50 times, in comparison to a naive implementation of the AdaBoost feature selection method. The last contribution is Linear Asymmetric Classifier (LAC), a classifier that explicitly handles the asymmetric learning goal as a well-defined constrained optimization problem. We demonstrated experimentally that LAC results in improved ensemble classifier performance.
  • Item
    Learning a Rare Event Detection Cascade by Direct Feature Selection
    (Georgia Institute of Technology, 2003) Wu, Jianxin ; Rehg, James M. ; Mullin, Matthew D.
    Face detection is a canonical example of a rare event detection problem, in which target patterns occur with much lower frequency than non-targets. Out of millions of face-sized windows in an input image, for example, only a few will typically contain a face. Viola and Jones recently proposed a cascade architecture for face detection which successfully addresses the rare event nature of the task. A central part of their method is a feature selection algorithm based on AdaBoost. We present a novel cascade learning algorithm based on forward feature selection which is two orders of magnitude faster than the Viola-Jones approach and yields classifiers of similar quality. This faster method could be used for more demanding classification tasks, such as on-line learning or searching the space of classifier structures. Our experimental results highlight the dominant role of the feature set in the success of the cascade approach.