Series
International Physical Internet Conference

Series Type
Event Series
Description
The International Physical Internet Conference aims to provide an open forum for researchers, industry representatives, government officials and citizens to together explore, discuss, introduce leading edge concepts, methodologies, recent projects, technological advancements,start-up initiatives, for current and future Physical Internet implementation.Conference topics include Logistics Nodes, Logistics Networks, System of Logistic Networks, Access and Adoption, Governance.
Associated Organization(s)
Associated Organization(s)
Organizational Unit

Publication Search Results

Now showing 1 - 3 of 3
  • Item
    Modular and Mobile Design of Hyperconnected Parcel Logistics Hub
    (Georgia Institute of Technology, 2021-06) Babalou, Sevda ; Bao, Wencang ; Montreuil, Benoit ; McGinnis, Leon F. ; Buckley, Shannon ; Barenji, Ali
    This paper employs modularity and mobility (M2) for designing recently introduced hyperconnected logistics hubs (HLH) for the Physical Internet, where parcels are encapsulated in modular tote-sized containers arriving in mobile racks, and these totes are consolidated by switching totes in shuffling cells to mobile racks with other totes with shared next destinations. The paper introduces the M2 framework and its modular standard-sized cells, racks and tote containers. Building on the overall HLH concept, the proposed M2 hub design is a major step forward with its on-the-fly transformability through operations to adapt to the dynamically changing sizes, mixes, characteristics, and flow of modular containers entering the hub and being consolidated and shipped within a short dwell time target. The paper uses a detailed case study to demonstrate the induced adaptability, adjustability, agility, efficiency, resilience, and scalability, and then it reports on an exploratory simulation experiment contrasting the performance of M2designs
  • Item
    Framework and Research Roadmap for a Next-Generation Hyperconnected Logistics Hub
    (Georgia Institute of Technology, 2021-06) Montreuil, Benoit ; McGinnis, Leon F. ; Buckley, Shannon ; Babalou, Sevda ; Bao, Wencang ; Beranji, Ali
    Today, parcel logistics hubs, where packages come in from many origins and are sorted to their many destinations, are both capital and labor intensive, with capacity that is largely determined by investments in conveyors. In this paper, in the context of Physical Internet growth, we propose a next-generation hyperconnected parcel hub concept that leverages parcel containerized consolidation, does not use conveyors, is robot-centric, with minimal requirement for human operators. Hub capacity can be readily adjusted to accommodate changing logistics patterns. The hub concept is described along with a demonstration case study, the fundamental hub design and operational decisions are identified, and a research roadmap is defined.
  • Item
    Digital Twin Design Requirements for Durable Goods Distribution in Physical Internet
    (Georgia Institute of Technology, 2021-06) Campos, Miguel ; Derhami, Shahab ; McGinnis, Leon F. ; Montreuil, Benoit ; Barenji, Ali
    Today the practice for distributing large products manufactured at few original equipment manufacturers (OEMs) consists of a dedicated Point-to-Point (PtP) logistics system, typically requiring long haul transport from the factory to the wholesale destination. A growing problem is the shortage of commercial drivers willing to be away from home for several days to move products cross-country. Hub relay network logistics systems are an alternative solution to P2P logistics systems that allow reducing drivers' away-from-home times. Operating a relay-based logistics system requires accounting for multiple interrelated operational decisions that become more complicated as the system becomes larger and encompasses more players. To deal with such complexity we propose utilizing a digital twin of the distribution and logistics system as a decision-making support tool to manage the system and make operational decisions efficiently. This paper explores the design and assessment of a hyperconnected relay network of transport hubs supporting the movement of durable goods from factory to wholesale destinations. It describes requirements and challenges in developing and implementing a digital twin for such systems.