Series
Doctor of Philosophy with a Major in Bioengineering

Series Type
Degree Series
Description
Associated Organization(s)

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Effects of the mechanical microenvironment on early avian morphogenesis
    (Georgia Institute of Technology, 2013-04-08) Henkels, Julia Ann
    The objective of this work is to investigate the elastic modulus of gastrula-stage avian embryos and the effect of substrate stiffness on presumptive precardiac cell fate. Our overall hypothesis is that the mechanical microenvironment, specifically, tissue modulus and substrate stiffness, influences gastrulation and cardiac induction. Large-scale morphogenetic movements during early embryo development are driven by complex changes in biochemical and biophysical factors. Current models for amniote primitive streak morphogenesis and gastrulation take into account numerous genetic pathways but largely ignore the role of mechanical forces. Here, we used atomic force microscopy (AFM) to obtain for the first time precise biomechanical properties of the early avian embryo. Our data reveal that the primitive streak is significantly stiffer than neighboring regions of the epiblast, and that it is stiffer than the pre-primitive streak epiblast. To test our hypothesis that these changes in mechanical properties are due to a localized increase of actomyosin contractility, we inhibited actomyosin contractility via the Rho kinase (ROCK) pathway using the small-molecule inhibitor Y-27632. Our results using several different assays show the following: 1) primitive streak formation was blocked; 2) the time-dependent increase in primitive streak stiffness was abolished; and 3) convergence of epiblast cells to the midline was inhibited. Taken together, our data suggest that actomyosin contractility is necessary for primitive streak morphogenesis, and specifically, ROCK plays a critical role. To better understand the underlying mechanisms of this fundamental process, future models should account for the findings presented in this study. As presumptive cardiac cells traverse the course of differentiation into cardiac myocytes during cardiogenesis, the sequence, magnitude, and spatiotemporal map of biomechanical and biochemical signals has not been fully explored. There have been many studies detailing the induction of cardiogenesis on a variety of substrates and extracellular matrix (ECM) proteins, but none have completed a rigorous study of the effects of substrate stiffness on the induction of precardiac cells prior to the onset of cardiac gene expression (smooth muscle alpha actin [SMAA] at stage 5.) We investigate the effects of the mechanical environment on precardiac cell behaviors in an in vitro setting to elucidate the effect of substrate stiffness and inducing factors on precardiac tissue and the potential connection between them. The cells in the anterior portion of the primitive streak are fated to form the heart, and we show differing levels of SMAA expression on substrates of differing moduli, which suggests that substrate stiffness may play a role in cardiac differentiation. We cannot determine the physical mechanisms during morphogenesis without understanding the response of precardiac cells to changes in their mechanical environment.
  • Item
    Bio-functionalized peg-maleimide hydrogel for vascularization of transplanted pancreatic islets
    (Georgia Institute of Technology, 2011-11-08) Phelps, Edward Allen
    Type 1 diabetes affects one in every 400-600 children and adolescents in the US. Standard therapy with exogenous insulin is burdensome, associated with a significant risk of dangerous hypoglycemia, and only partially efficacious in preventing the long term complications of diabetes. Pancreatic islet transplantation has emerged as a promising therapy for type 1 diabetes. However, this cell-based therapy is significantly limited by inadequate islet supply (more than one donor pancreas is needed per recipient), instant blood-mediated inflammatory reaction, and loss of islet viability/function during isolation and following implantation. In particular, inadequate revascularization of transplanted islets results in reduced islet viability, function, and engraftment. Delivery of pro-vascularization factors has been shown to improve vascularization and islet function, but these strategies are hindered by insufficient and/or complex release pharmacokinetics and inadequate delivery matrices as well as technical and safety considerations. We hypothesized that controlled presentation of angiogenic cues within a bioartificial matrix could enhance the vascularization, viability, and function of transplanted islets. The primary objective of this dissertation was to enhance allogenic islet engraftment, survival and function by utilizing synthetic hydrogels as engineered delivery matrices. Polyethylene glycol (PEG)-maleimide hydrogels presenting cell adhesive motifs and vascular endothelial growth factor (VEGF) were designed to support islet activities and promote vascularization in vivo. We analyzed the material properties and cyto-compatibility of these engineered materials, islet engraftment in a transplantation model, and glycemic control in diabetic subjects. The rationale for this project is to establish novel biomaterial strategies for islet delivery that support islet viability and function via the induction of local vascularization.
  • Item
    Modulation of cell adhesion strengthening by nanoscale geometries at the adhesive interface
    (Georgia Institute of Technology, 2010-05-11) Coyer, Sean R.
    Cell adhesion to extracellular matrices (ECM) is critical to many cellular processes including differentiation, proliferation, migration, and apoptosis. Alterations in adhesive mechanisms are central to the behavior of cells in pathological conditions including cancer, atherosclerosis, and defects in wound healing. Although significant progress has been made in identifying molecules involved in adhesion, the mechanisms that dictate the generation of strong adhesive forces remain poorly understood. Specifically, the role of nanoscale geometry of the adhesive interface in integrin recruitment and adhesion forces remains elusive due to limitations in the techniques available for engineering cell adhesion environments. The objective of this project was to analyze the role of nanoscale geometry in cell adhesion strengthening to ECM. Our central hypothesis was that adhesive interactions are regulated by integrin clusters whose recruitment is determined by the nanoscale geometry of the adhesive interface and whose heterogeneity in size, spacing, and orientation modulates adhesion strength. The objective of this project was accomplished by 1) developing an experimental technique capable of producing nanoscale patterns of proteins on surfaces for cell adhesion arrays, 2) assessing the regulation of integrin recruitment by geometry of the adhesive interface, and 3) determining the functional implications of adhesive interface geometry by systematically analyzing the adhesion strengthening response to nanoscale patterns of proteins. A printing technique was developed that patterns proteins into features as small as 90nm with high contrast and high reproducibility. Cell adhesion arrays were produced by directly immobilizing proteins into patterns on mixed-SAMs surfaces with a protein-resistant background. Colocalization analysis of integrin recruitment to FN patterns demonstrated a concentrating effect of bound integrins at pattern sizes with areas equivalent to small nascent focal adhesions. At adhesion areas below 333 × 333 nm2, the frequency of integrin recruitment events decreased significantly indicating a threshold size for integrin clustering. Functionally, pattern sizes below the threshold were unable to participate in generation of adhesion strength. In contrast, patterns between the threshold and micron sizes showed a relationship between adhesion strength and area of individual adhesion points, independent of the total available adhesion area. These studies introduce a robust platform for producing nanoscale patterns of proteins in biologically relevant geometries. Results obtained using this approach yielded new insights on the role of nanoscale organization of the adhesive interface in modulating adhesion strength and integrin recruitment.
  • Item
    FAK Modulates Cell Adhesion Strengthening Via Two Distinct Mechanisms: Integrin Binding and Vinculin Localization
    (Georgia Institute of Technology, 2006-11-16) Michael, Kristin E.
    Cell adhesion to the extracellular matrix (ECM) provides tissue structure and integrity as well as triggers signals that regulate complex biological processes such as cell cycle progression and tissue-specific cell differentiation. Hence, cell adhesion is critical to numerous physiological and pathological processes, including embryonic development, cancer metastasis, and wound healing, as well as biotechnological applications, such as host responses to implanted devices and integration of tissue-engineered constructs. During the adhesion process, integrin surface receptors bind ECM proteins, cluster, and associate with the actin cytoskeleton. Subsequent strengthening of the integrin/actin cytoskeleton interaction occurs via complexes of proteins known as focal adhesions. Due to the close association between biochemical and biophysical processes within adhesion complexes, mechanical analyses can provide important new insights into structure/function relationships involved in regulating the adhesion process. The objective of this project was to investigate the role of the protein tyrosine kinase FAK in cell adhesion strengthening. Our central hypothesis was that FAK regulates adhesion strengthening by modulating interactions between integrins and FA structural components. Using a novel combination of genetically engineered cells to control the interactions of FAK, a spinning disk adhesion assay with micropatterned substrates to obtain reproducible and sensitive measurements of adhesion strength, and quantitative biochemical assays for analyzing changes in adhesive complexes, we demonstrate that FAK modulates adhesion strengthening via two distinct mechanisms: (1) FAK expression results in elevated integrin activation leading to regulation of strengthening rate and (2) FAK regulates steady-state adhesion strength via vinculin recruitment to focal adhesions. We also show that the autophosphorylation and catalytic sites of FAK are critical to this regulation of adhesion strengthening. This work is significant because it both identifies functional mechanisms of FAK and provides the first evidence that focal adhesion signaling regulates the adhesion strengthening process. Furthermore, this research demonstrates that the dependency of migration on adhesion strength is highly complex and establishes a need for adhesion strengthening metrics in analyzing the functional mechanisms of molecules within adhesion complexes.