Series
Doctor of Philosophy with a Major in Computer Science

Series Type
Degree Series
Description
Associated Organization(s)
Associated Organization(s)

Publication Search Results

Now showing 1 - 2 of 2
  • Item
    Acoustical Awareness for Intelligent Robotic Action
    (Georgia Institute of Technology, 2007-11-12) Martinson, Eric Beowulf
    With the growth of successes in pattern recognition and signal processing, mobile robot applications today are increasingly equipping their hardware with microphones to improve the set of available sensory information. However, if the robot, and therefore the microphone, ends up in a poor location acoustically, then the data will remain noisy and potentially useless for accomplishing the required task. This is compounded by the fact that there are many bad acoustic locations through which a robot is likely to pass, and so the results from auditory sensors often remain poor for much of the task. The movement of the robot, though, can also be an important tool for overcoming these problems, a tool that has not been exploited in the traditional signal processing community. Robots are not limited to a single location as are traditionally placed microphones, nor are they powerless over to where they will be moved as with wearable computers. If there is a better location available for performing its task, a robot can navigate to that location under its own power. Furthermore, when deciding where to move, robots can develop complex models of the environment. Using an array of sensors, a mobile robot can build models of sound flow through an area, picking from those models the paths most likely to improve performance of an acoustic application. In this dissertation, we address the question of how to exploit robotic movement. Using common sensors, we present a collection of tools for gathering information about the auditory scene and incorporating that information into a general framework for acoustical awareness. Thus equipped, robots can make intelligent decisions regarding control strategies to enhance their performance on the underlying acoustic application.
  • Item
    Robot Tool Behavior: A Developmental Approach to Autonomous Tool Use
    (Georgia Institute of Technology, 2007-06-11) Stoytchev, Alexander
    The ability to use tools is one of the hallmarks of intelligence. Tool use is fundamental to human life and has been for at least the last two million years. We use tools to extend our reach, to amplify our physical strength, and to achieve many other tasks. A large number of animals have also been observed to use tools. Despite the widespread use of tools in the animal world, however, studies of autonomous robotic tool use are still rare. This dissertation examines the problem of autonomous tool use in robots from the point of view of developmental robotics. Therefore, the main focus is not on optimizing robotic solutions for specific tool tasks but on designing algorithms and representations that a robot can use to develop tool-using abilities. The dissertation describes a developmental sequence/trajectory that a robot can take in order to learn how to use tools autonomously. The developmental sequence begins with learning a model of the robot's body since the body is the most consistent and predictable part of the environment. Specifically, the robot learns which perceptual features are associated with its own body and which with the environment. Next, the robot can begin to identify certain patterns exhibited by the body itself and to learn a robot body schema model which can also be used to encode goal-oriented behaviors. The robot can also use its body as a well defined reference frame from which the properties of environmental objects can be explored by relating them to the body. Finally, the robot can begin to relate two environmental objects to one another and to learn that certain actions with the first object can affect the second object, i.e., the first object can be used as a tool. The main contributions of the dissertation can be broadly summarized as follows: it demonstrates a method for autonomous self-detection in robots; it demonstrates a model for extendable robot body schema which can be used to achieve goal-oriented behaviors, including video-guided behaviors; it demonstrates a behavior-grounded method for learning the affordances of tools which can also be used to solve tool-using tasks.