Series
School of Chemical and Biomolecular Engineering Seminar Series

Series Type
Event Series
Description
Associated Organization(s)
Associated Organization(s)

Publication Search Results

Now showing 1 - 5 of 5
Thumbnail Image
Item

Renewable Electricity as a Feed Stock for the Chemical Industry

2021-12-08 , Moses, Poul Georg

Heavy industry and long-haul transportation are responsible for a large percentage of humanity's greenhouse-gas emissions. In these sectors, direct electrification is not enough. They need energy-dense green fuels – similar to the fuels used today, but made from renewable sources. In this presentation a set of solutions will be presented. Solutions based on combining proven technologies from the chemical industry with new technology to produce essential chemicals and fuels such as green hydrogen, green ammonia, eMethanol, and other clean fuels from non-fossil feedstocks such as biomass, waste and renewable electricity. The most critical new technology in terms of cost and energy loss is water electrolysis for hydrogen production. A deep dive on the most efficient electrolysis technology, high temperature solid oxide electrolysis will be given ranging from basic thermodynamics to process integration for chemicals production.

Thumbnail Image
Item

Thinking About Data: Representations, Transformations, and Applications

2021-10-13 , Zavala, Victor M.

A dataset can be represented in different mathematical forms; for example, a micrograph can be represented as an image, as a matrix, as a graph (network), or as an intensity function. These representations are used to perform transformations of the data with the goal of extracting different types of features such as spatial patterns, geometrical patterns, correlations, principal components, gradients of light, and frequencies. These features contain key information that facilitate visualization and analysis, detection of abnormalities, and construction of predictive models. In this talk, we show how to use representations and transformations in innovative ways to analyze complex datasets arising in flow cytometry, liquid crystals, chemical processes, and molecular dynamics. We show how these tools can be used to design chemical sensors for the detection of contaminants in air and liquid mixtures, to predict reaction rates for acid-catalyzed reactions, to predict material properties from images, and to detect faults.

Thumbnail Image
Item

The Energy Transition and the Role of Direct Air Capture

2021-11-17 , Lackner, Klaus S.

The rapid drop in the price of renewable energy portends massive changes in the world’s energy infrastructure and offers hope that climate change can be addressed. Incumbent fossil fuel technologies, hamstrung by concerns over climate change, will are having difficulties to adapt to the new world. To avert a climate disaster, the energy transition must happen fast. However, it will likely take too long. Like any transition in a complex system, it very likely will introduce instabilities. Yet the transition must be executed flawlessly because, just like climate change, large-scale interruptions in energy services could have global catastrophic consequences. Growing carbon dioxide emissions from fossil fuel consumption are the main cause of climate change. Excess carbon dioxide will linger in the atmosphere for centuries. Decades of procrastination have put the world on a trajectory that will overshoot the climate targets set by the international community. The uncontrolled dumping of carbon dioxide into the atmosphere will have to stop, and carbon excess will have to be removed from the environment. The scale of the necessary drawdown is far beyond the scope of capture by photosynthetic processes and storage in natural sinks. Direct capture of carbon dioxide from ambient air combined with technical carbon storage offers a scalable solution to this waste management problem. Eliminating all carbon dioxide emissions from the energy sector and cleaning up prior emissions is a gargantuan task likely lead by renewable energy. Even though the intermittency of renewable energy poses a formidable challenge, renewable energy is already pushing into the market and is beginning to displace fossil energy sources. Yet, displacing oil and gas for long-term storage and transportation, especially aviation, will be difficult. However, production of synthetic fuels and substitutes for petrochemical from renewable energy, carbon dioxide and water will make abandoning carbonaceous fuels and materials unnecessary. Advances in direct air capture enable a complete transition to renewable energy without abandoning existing energy infrastructures and combine this transition with the necessary massive drawdown of excess carbon in the environment. We will discuss the technologic and economic requirements, consider possible pathways and highlight gaps in our current understanding. In summary, we argue that photovoltaic electricity should not be shoe-horned into the existing electricity grid but be fed into a large and diverse supply chain, that provides grid electricity, charges batteries for short term storage, produces a variety of fuels and chemicals, produces synthetic hydrocarbon storage to iron out variability in resource availability on timescales ranging from weeks to decades and lastly powers the drawdown of excess carbon from the environment. The least developed aspect of this vision is direct air capture technology. It appears within reach, but it will need a global development effort to succeed.

Thumbnail Image
Item

Progress Towards the Industrialization of Electrochemical CO2 Reduction

2021-10-06 , Flake, John

Thumbnail Image
Item

Reprogramming the Immune Response Through Biomolecular Engineering

2021-10-20 , Spangler, Jamie

The repertoire of naturally occurring proteins is finite and many molecules induce multiple confounding effects, limiting their efficacy as therapeutics. Recently, there has been a growing interest in redesigning existing proteins or engineering entirely new proteins to address the deficiencies of molecules found in nature. Researchers have traditionally taken an unbiased approach to protein engineering, but as our knowledge of protein structure-function relationships advances, we have the exciting opportunity to apply molecular principles to guide engineering. Leveraging cutting-edge tools and technologies in structural biology and molecular design, our lab is pioneering a unique structure-based engineering approach to elucidate the mechanistic determinants of protein activity, in order to inform therapeutic development. Our group is particularly interested in engineering immune proteins, such as cytokines, growth factors, and antibodies, to bias the immune response for targeted disease treatment. Despite the recent explosive growth of protein drugs within the pharmaceutical market, limitations such as delivery, acquired resistance, and toxicity have impeded realization of the full potential of these therapeutics, necessitating new approaches that synergize with existing strategies to address clinically unmet needs. This talk will highlight ongoing work in our lab that spans the discovery, design, and translation of novel molecular immunotherapeutics for applications ranging from cancer to autoimmune disorders to regenerative medicine.