Series
Doctor of Philosophy with a Major in Building Construction

Series Type
Degree Series
Description
Associated Organization(s)
Associated Organization(s)
Organizational Unit

Publication Search Results

Now showing 1 - 1 of 1
  • Item
    Haptic Interface Design Support: Assisting Designers in Analyzing the Design Space of and Prototyping Haptic Interfaces
    (Georgia Institute of Technology, 2022-05-27) Lin, Hongnan
    Haptic interfaces, which enable human-computer interaction through touch, have the potential to benefit a wide range of life activities, including communication, education, creation, entertainment, and transportation. The development of practical haptic interface design requires the involvement of designers with their user-centered design perspectives and creative design expertise. Designers entering the haptic domain need support. Previous efforts have focused on providing hardware and software platforms for designers to design haptic experiences on top. In this dissertation, we study how to support designers to create new haptic hardware with emerging technologies. Specifically, we focus on two main challenges: analyzing the design space of haptic interfaces and prototyping haptic interfaces. Our inquiry is embodied in two projects respectively: Hapticology and FlexHaptics. In both projects, we design, build, and evaluate artifacts, i.e. tools and approaches, to transform haptic interface design from its current state to a preferred state and reflect on implications for future efforts on supporting designing haptic interfaces. Hapticology project proposes a rational design process for haptic interfaces adapted from design space analysis and morphological analysis. It provides a combination of design artifacts needed to perform the analysis, including a space of design options, discussions of the impact of the design options, and data visualization of the design options and impacts. FlexHaptics project studies the prototyping problem, focused on passive haptic interfaces. FlexHaptics method to design passive haptic interfaces comprises the modules, mathematical models, and editor. It combines important advantages of previous techniques, including extensive and fine-tunable haptic profiles and computer-aided design and fabrication. It also introduces beam structures to the field of passive haptic interfaces, which benefit predictable haptic properties, accessible fabrication, and compact form factors. The workshop explores passive haptic inputs with novice designers using FlexHaptics method. It reveals the design process followed by novice designers, challenges encountered in designing haptic hardware, and informs implications for future design support for creating passive-haptic interfaces. The two projects form a T-shape research structure; Hapticology builds the horizontal line as it navigates through extensive possibilities of haptic interface designs, and FlexHaptics builds the vertical line as it focuses on one haptic interface type identified from Hapticology and dives into the design processes. Synthesizing the findings from the projects, we discuss haptic interface design processes integrating the outcomes of this work and depict a framework to promote innovation in haptic interfaces.