Series
Doctor of Philosophy with a Major in Building Construction

Series Type
Degree Series
Description
Associated Organization(s)
Associated Organization(s)
Organizational Unit

Publication Search Results

Now showing 1 - 5 of 5
  • Item
    Product Model Exchange Standards for Cast-in-Place Reinforced Concrete: Implementation Methods, Value Considerations, and Application to Design Indicators
    (Georgia Institute of Technology, 2022-04-27) Garcia Bottia, Leonardo
    Building Information Modeling (BIM) has changed the way information in design and construction is communicated by allowing the possibility of exchanging project models and data together. To optimize the process, standards have been developed to define what is required in each exchange and how to represent it. For several years Cast-in-Place (CIP) reinforced concrete (RC), one of the most important construction materials worldwide, has been subject to considerable efforts toward the development of its standards. However, the monolithic nature of the material and its complex supply chain makes it difficult for this development to be properly carried out. This dissertation presents the results of a study with four key aims: (1) identify how exchange standards for CIP RC fit into current engineering and construction practices, (2) develop the requirements and methods for implementation, (3) study the value considerations of implementing the standards in practice, and (4) apply the information available in exchange standards to enhance the design and construction processes through the estimation of design indicators. This research is developed in the context of the undergoing efforts of the American Concrete Institute (ACI) to develop industry-wide standards for CIP RC concrete. To map the current engineering practices and challenges regarding CIP RC model exchanges, the dissertation presents the results of an ethnographic-action study performed to allow a description of current behaviors, the acquisition of qualitative data regarding the advantages of implementing BIM standards on a practical level, and to inform of potential additional requirements for standardization. To assist the implementation of standards in practice, this dissertation presents a set of methods for implementation that adapt to current tools and practices. To study the value considerations of implementing exchange standards, the same CIP RC processes captured in the ethnographic study are reproduced using the methods developed for model exchange standards. Finally, the study presents the results of a logistic regression model developed to use the parametrized information made available through these exchanges, to estimate indicators that improve the design and construction processes. In conclusion, this research provides recommendations to further develop CIP RC modeling and exchange standards, studies how design and construction practice aligns with new CIP RC standard workflows, provides methods for implementation, and develops a model useful to predict design indicators during early stages using the valuable information embedded in CIP RC exchange standards.
  • Item
    Mitigation of Business Risk Exposure in Public Higher Education Facilities Management Using Key Performance Indicators: Analysis of the University System of Georgia
    (Georgia Institute of Technology, 2021-05-25) Maddox, Anthony J.
    The post-secondary education sector has sustained significant student growth, which has led to the expansion of institutional buildings and infrastructure. With increased growth and expansion experienced in previous years, appropriate operational funding has not always matched growth. This lack of funding can cause an increase of deferred maintenance and capital renewal, which results in an increase in Business Risk Exposure (BRE) to the organization. The objective of this study is to examine the facilities operational and capital funding of the University System of Georgia institutions. Funding will be compared to counterparts within a Facilities Performance Indicator (FPI) report in order to understand if operational funding is adequate or below comparable institutions. This report is comprised of educational institutions across the United States volunteering current facility information, created annually by the Association of Physical Plant Administrators (APPA).
  • Item
    Conceptual framework for incorporating access for maintainability considerations in BIM coordination
    (Georgia Institute of Technology, 2020-05-05) Sierra Aparicio, Monica Viviana
    Access to perform maintainability tasks has been addressed by facility managers as one of the common struggles they face once the construction project is delivered. The development of Building Information Modeling (BIM) has proved the potential to foresee, identify, and remove the physical barriers for maintenance teams in order to allow a better compliance of their tasks and to ensure that equipment is timely and effectively reviewed. Also, rule-based software might enhance the revision of the Americans with Disabilities Act (ADA) compliance checks, easing the decision-making process in regard to end-user accessibility. Tools such as Solibri have rule templates for a few ADA checks. Yet, there is not a framework that can provide complete operational constraints and foresees the avoidance of accessibility concerns during the design phase. The objective of this study is to develop a proof of concept that addresses access for maintainability requirements during the coordination procedure, ensuring a welcoming and equitable environment for everybody. In order to introduce accessibility preconditions to an automated rule generator, the interpretation and reduction of the regulation needs to be done first. Afterward, the decoded restrictions are introduced into a Dynamo script, which will make them visible on the clash detection tool during the coordination procedure. Later on, the proposed framework will be tested on a case study. The proposal might contribute to the reduction of the project’s lifecycle costs by considering maintainability restrictions earlier in the design process. Moreover, inputs related to disabled individuals’ daily struggles might be further developed by fining tune the proof of concept. Therefore, those issues might be included as a driver, following a human-centered design process. Furthermore, the incorporation of those constraints will contribute to the execution of a resilient building, capable of satisfying its occupants displacement requirements.
  • Item
    DECISION SUPPORT FRAMEWORK FOR TRANSFORMING URBAN BUILDINGS AT MULTIPLE SCALES
    (Georgia Institute of Technology, 2020-04-25) Chang, Soowon
    Due to the increasing population, cities are requiring more energy. Among urban elements, buildings account for about 40% of energy demands and 30% of carbon dioxide emissions globally. To address the increase of energy demands and environmental responsibility, existing buildings should be transformed into highly energy efficient forms. This research explores how to support decisions that affect performance-driven smart and resilient urban systems focusing on building renovations. The research scope covers the redevelopment of existing built forms at multiple scales. Since urban objects influence urban patterns at other scales, both individual and collective performances of buildings at larger scales should be evaluated to support proper redevelopment decisions. In addition, the transformation of existing buildings will encounter different problems and challenges at different scales in urban areas. On an individual building level, the selection of different envelope options can project the future architectural environment of buildings. On a block level, the performance will be changed along with combinations of building typologies such as land use, height, floor area, etc., and therefore changes to building typologies should be managed collectively to improve the performance. When PV are applied in buildings and hourly electricity demands are recognized, the dynamic energy flows on a community level will become complex to manage. In this respect, this research is devised to identify and address redevelopment problems at different scales: individual buildings, block, and community. On the individual building level, this research studies how to support decision-making when optimizing the selection of building envelopes by using a Genetic Algorithm (GA). Based on the findings from optimizing at each scale, an interdependence of building parameters and multiple performance is observed. Therefore, decision frameworks across multiple scales are extrapolated to support community-driven and building-driven decisions. On the block level, this research explores how existing building typologies influence multiple performance indicators in a collective manner to support reconfiguring decisions using a Bayesian Multilevel Modeling. On the community level, this study addresses how the community can optimize block boundaries for resiliently managing the energy demand and supply of groups of buildings by using K-nearest neighbors (KNN) and community clustering algorithms. This research will contribute to making appropriate decisions for investment, regulations, or guidelines when renovating physical building assets at different scales in urban areas. The research findings will consolidate theoretical understandings about the relationships between building design and construction parameters considering multiple performance indicators at multiple scales in urban areas. Since many cities are at the tipping point trying to become more resilient, increasingly focusing on sustainability, economic feasibility, and human well-being, a better understanding of the impact of built forms at multiple scales will support urban development decisions for the future smart and connected communities.
  • Item
    Clash Resolution Optimization based on Component and Clash Dependent Networks
    (Georgia Institute of Technology, 2020-04-25) Hu, Yuqing
    Effective coordination across multi-disciplines is crucial to make sure that the locations of building components meet physical and functional constraints. Building information modeling (BIM) has been increasingly applied for coordination and one of its most widely used applications is automatic clash detection. The realistic visualization function of BIM helps reduce ambiguity and expedites clash detection. However, many project participants criticize automatic clash detection, as many detected clashes are irrelevant with no significant impact on design or construction work, thereby decreasing the precision of clash results and the benefits of BIM. In addition, clash detection consists of discovering problems, but it does not entail solving these clashes. Even though some studies discussed automatic clash detection, they rarely discussed the dependence relationships between building components. However, a building is an inseparable whole, and the dependent relationships among building components propagate the impact of clashes. Relocating one object to correct one clash may result in other objects violating spatial constraints, which may directly cause new clashes or indirectly cause them through relocating other components. Therefore, figuring out the dependency among clash objects with peripheral building components is useful to optimizing clash solutions by avoiding change propagation. Algorithms are designed to automatically capture dependency relations from models to construct a component dependency network. The network is used as an input to distinguish irrelevant clashes for improving clash detection quality by analyzing the relations between clash components and the relations between clash components with their nearby components. The feasibility to harness the clash component network and graph theory are also explored to generate the clash component change list for minimizing clash change impact from a holistic perspective. In addition, this study demonstrates how to use BIM information to refine clash management, and specifically focus on designing a hybrid clash correction sequence to minimize potential iterative adjustments. The contributions of this study exist at three levels. The most straightforward contribution is that this research proposed a method to improve clash detection quality as well as to provide decision support for clash resolution, which can help project teams to focus on important clashes and improve design coordination efficiency. In addition, this research proposes a new perspective to view clashes, switching the clash management focus and inspiring researchers to focus on finding global optimal solutions for all clashes other than a single clash. The third level is that even though this research focuses on clash management, the optimization algorithms based on graph theory can be used in other interdependent systems to improve design and construction performance.