Series
Master's Projects

Series Type
Publication Series
Description
Associated Organization(s)
Associated Organization(s)

Publication Search Results

Now showing 1 - 10 of 58
  • Item
    The Development and Characterization of the Laser Ranging System on the RANGE CubeSat Mission
    (Georgia Institute of Technology, 2016-12-15) Levine, Zachary A.
    In Spring 2016, Georgia Tech Space Systems Design Laboratory (SSDL) will begin operations on the Ranging And Nanosatellite Guidance Experiment (RANGE) Mission. A crucial element of this mission is the Inter satellite ranging system. This system will determine the relative distance between the two RANGE sister CubeSats providing validation that such a system can function in orbit on a CubeSat. This document describes the factors considered in choosing the Voxtel Laser Range Finder (LRF) Module as the flight unit for both satellites, the integration and testing of this system, and the preliminary analysis of laboratory testing data to predict on-orbit performance.
  • Item
    Initial Characterization for LIDAR Remote Sensing from an UAV Platform
    (Georgia Institute of Technology, 2016-12) Lacerda, Michel Alves
  • Item
    Initial Characterization for LIDAR Remote Sensing from an UAV Platform
    (Georgia Institute of Technology, 2016-12) Lacerda, Michel Alves
  • Item
    Design and Application of a Circular Aperture Sun Sensor
    (Georgia Institute of Technology, 2016-12) Herman, Michael
  • Item
    Design and Application of a Circular Aperture Sun Sensor
    (Georgia Institute of Technology, 2016-12) Herman, Michael
  • Item
    The Development and Characterization of the Laser Ranging System on the RANGE CubeSat Mission
    (Georgia Institute of Technology, 2016-12) Levine, Zachary A.
  • Item
    Refinements to the General Methodology Behind Strapdown Airborne Gravimetry
    (Georgia Institute of Technology, 2016-08-05) Seywald, Kevin Lee
    Measuring Earth’s gravitational field has important applications in fields ranging from geodesy to exploration geophysics. Gravity field disturbances are typically no more than 100 mGal, hence requiring extremely precise sensors. The estimation of error sources inherent in these sensors, such as bias, scale factor, and drift rate, significantly improve the accuracy of these measurements, allowing for more precise gravity estimates. This research builds upon prior work using a strapdown Inertial Navigation System (INS) paired with Global Positioning Systems (GPS) for airborne platforms. In order to test and validate the processing algorithms, various simulated test cases were created. Several refinements were made to the traditional approach found in the literature, making the process more robust. Most notably, an analytical solution was developed for the quaternion integration problem, which is typically implemented using numerical methods. The analytical solution limits the integration error to machine precision, and removes any error propagation. Furthermore, the error equations implemented in the Kalman Filter were refined such that they better capture the true dynamics of the error-states. These changes to the existing methodology were validated by the proposed algorithm’s ability to accurately estimate the parameters used to generate the simulated flight data.
  • Item
    Refinements to the General Methodology Behind Strapdown Airborne Gravimetry
    (Georgia Institute of Technology, 2016-08) Seywald, Kevin Lee
  • Item
    Mechanical Design of a Cubesat Aeroshell for an Earth Demonstration of Single-Stage Drag Modulated Aerocapture
    (Georgia Institute of Technology, 2016-08-01) Woollard, Bryce A.
    The following article documents the conceptual study of a smallsat entry vehicle to be implemented for demonstration of single-stage drag modulated aerocapture at Earth. The specific nature of the contents below focuses on the mechanical design and analysis of the aeroshell and drag device, as well as the mechanisms by which all parts are to be manufactured, assembled and actuated in order to perform the intended orbital maneuver. The results of this study show that accomplishing aerocapture with a cubesat entry vehicle appears to be feasible with a 2U payload and would require approximately 20 kg and 0.1 m3 of secondary payload mass and volume, respectively. First order stagnation point thermal protection sizing suggests that 4.2 cm of PICA would be required globally around the vehicle, although potential exists to optimize this value relative to geometric location. Static stability analysis indicates that the designed vehicle is nose-forward stable for a majority of the atmospheric interface with outstanding questions pertaining to atmospheric egress. Manufacturing costs for a full scale aeroshell would be approximately $15,000 and require roughly 2 months of lead time, dependent on presently available machine shop capabilities.