Person:
Orlando, Thomas M.

Associated Organization(s)
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 4 of 4
  • Item
    Characterization of H2O vapor transport through Lunar Mare and Lunar Highland simulants at low pressures for in-situ resource utilization - Data Files
    (Georgia Institute of Technology, 2023) Farr, Tyler P. ; Jones, Brant M. ; Orlando, Thomas M. ; Loutzenhiser, Peter G.
    H2O(v) transport through packed beds of Lunar Mare and Lunar Highland simulants was examined for relevant in-situ resource utilization conditions to inform volatile H2O extraction from the lunar surface. Experiments were conducted with different packed beds at average bed pressures of 105 and 3,960 Pa at ~350K for different flow regimes in the range of 0.47 < < 20.7. A piecewise model was used to describe the transition between the advective flow regime to the Knudsen flow regime. Non-linear regression was used to determine a tortuosity shape factor of 2.6175 ± 0.0092 and 0.0937 ± 0.0008, a transition Knudsen number of 1.5984 and 4.0995, and a viscous flow permeability of 0.8238 ± 0.0010 × 10-12 m2 and 5.4805 ± 0.0061 × 10-12 m2 for the Lunar Mare simulant and Lunar Highland simulant, respectively. The resulting Knudsen diffusivities are 6.6530 ± 0.0018 cm2·s-1 and 18.9008 ± 0.0100 cm2·s-1, respectively. These results are necessary for informing the development of in-situ resource utilization technologies for the thermal extraction of H2O.
  • Item
    Characterization of H2O Transport Through Johnson Space Center Number 1A Lunar Regolith Simulant at Low Pressure for In-situ Resource Utilization - Data File
    (Georgia Institute of Technology, 2021-02-04) Schieber, Garrett L. ; Jones, Brant M. ; Orlando, Thomas M. ; Loutzenhiser, Peter G.
    H2O transport through a packed bed of Johnson Space Center number 1A (JSC-1A) lunar regolith simulant was examined at relevant temperatures and pressures for in-situ resource utilization (ISRU) on the Moon. Experimentation was conducted over a range of pressures from 50 to 2,065 Pa at ~350 K, corresponding to Knudsen numbers of 0.3 < Kn < 11 and relevant towards ISRU technologies. A piecewise function was used to evaluate transition and Knudsen regime flows. The piecewise model utilized a Knudsen number that predicted the transition point between advective and Knudsen flows. A transition Knudsen number of 1.66 ± 0.61 and a tortuosity shape parameter of 0.736 ± 0.13 were determined from non-linear regression, and Knudsen diffusivities of 10.62 cm2·s-1, 10.40 cm2·s-1 and 9.04 cm2·s-1 for packed beds of JSC-1A with porosities of 0.388, 0.385, and 0.365, respectively. The experimental measurements, methodology, and modeling provide useful information for ISRU technologies involving the transport of volatiles (e.g., thermal extraction of H2O).
  • Item
    Advection Diffusion Model for Gas Transport Within a Packed Bed of JSC-1A Regolith Simulant - Data File
    (Georgia Institute of Technology, 2020) Schieber, Garrett L. ; Jones, Brant M. ; Orlando, Thomas M. ; Loutzenhiser, Peter G.
    The advection diffusion model was evaluated for gas transport within a packed bed of lunar JSC-1A regolith simulant at low to medium total pressures over three flow regimes: (1) the slip flow regime (2) the transition regime and (3) the Knudsen regime. These regimes are pertinent to the design of H2O extraction devices for in-situ resource utilization, sampling missions, and surface science. Experimentation was conducted over a range of average pressures of 100 to 25,000 Pa, corresponding to Knudsen numbers between 0.01 and 100 at ambient temperature with Ar and N2. Non-condensing, gases with ideal behavior were evaluated to isolate key flow properties as first step towards evaluating more complex H2O flows. Experimental results were coupled to physical models, and key properties were evaluated to assess the model fit. The experimental results in the transition regime followed the expected behavior based on similar works for microchannel flow and showed that advection is not negligible for transition regime flows. The advection diffusion model in the transition regime fit the results for Knudsen numbers less than unity, and showed the need to further develop gas slip models for Knudsen numbers greater than unity. Key parameters necessary to define were the porosity, tortuosity, pore diameter of the regolith medium, and the gas slip parameter was key in determining the gas-specific transport rate.
  • Item
    NIRT: Electron beam chemical vapor deposition (CVD) - a new tool for manufacturing nanomaterials and devices
    (Georgia Institute of Technology, 2011-09-22) Lackey, W. Jack ; Wang, Zhong ; Fedorov, Andrei G. ; Orlando, Thomas M.