Person:
Hay, Mark E.

Associated Organization(s)
Organizational Unit
ORCID
ArchiveSpace Name Record

Publication Search Results

Now showing 1 - 5 of 5
  • Item
    Induction of seaweed chemical defenses by amphipod grazing
    (Georgia Institute of Technology, 1996-12) Cronin, Greg ; Hay, Mark E.
    Grazing by the generalist amphipod Ampithoe longimana induced increased concentrations of defensive secondary metabolites in the brown alga Dictyota menstrualis and made the seaweed less susceptible to further attack by the amphipod. Although A. longimana preferentially consumes D. menstrualis, its feeding rates can be reduced significantly by high concentrations of diterpenoid dictyols produced by the alga. In 1991, D. menstrualis from sites with high numbers of A. longimana had higher levels of grazing scars, higher concentrations of dictyols, and were less palatable to A. longimana than plants from sites with few amphipods. Among—site differences in palatability to amphipods did not correlate with plant differences in protein, nitrogen, or carbon content. Within a site, plants that had apparent amphipod grazing scars were significantly less palatable to A. longimana than neighboring undamaged plants. Controlled field experiments manipulating A. longimana densities supported the hypothesis that feeding by this amphipod induced elevated chemical defenses in the alga. Compared to undamaged control plants, amphipod—damaged plants had 19—34% more of three diterpenoid secondary metabolites and were 50% less palatable to amphipods. Soluble protein and thallus toughness were unaffected by amphipod grazing and thus could not have caused the differences in palatability. High—pressure liquid chromatography evaluation of adventitious branches growing from blade margins at sites of amphipod grazing scars showed that these branches had significantly elevated levels of two diterpenoids relative to normal blade apices or middles. Thus, the amphipod—induced resistance to further attack occurs through an increase in chemical defenses, and these defenses are, to some extent, localized within the plant thallus. Among—site differences in amphipod densities, grazing scars, seaweed defensive chemistry, and plant palatability that we documented in 1991 varied considerably during 1992 and 1993, suggesting that these interrelationships may be complex. In 1992, A. longimana densities did not differ between sites, and there were no between—site differences in palatability or concentrations of deterrent secondary metabolites. In 1993, however, A. longimana densities did differ between sites, but between—site differences were less dramatic than in 1991. Some secondary metabolites were slightly, but significantly, increased at the site with higher densities of A. longimana, but this had no effect on A. longimana feeding. It has been long recognized that marine herbivores are active participants in seaweed—herbivore interactions and can greatly influence the structure of benthic algal communities. Our findings suggest that seaweeds are not passive participants in these interactions, but can actively alter their susceptibility to herbivores in ecological time. Induced responses to herbivory help explain both spatial (i.e., within—thallus, within—site, and among—site) and temporal variation in the chemical defenses of D. menstrualis.
  • Item
    Susceptibility to herbivores depends on recent history of both the plant and animal
    (Georgia Institute of Technology, 1996-07) Cronin, Greg ; Hay, Mark E.
    Physical stress to seaweeds and hunger stress of herbivores can influence the outcome of chemically mediated seaweed—herbivore interactions. The unpalatable brown seaweed Dictyota ciliolata produces the diterpenoid secondary metabolites pachydictyol A, dictyol B acetate, and dictyodial. At natural concentrations, pachydictyol A deterred the sea urchin Arbacia punctulata but did not inhibit feeding by the pinfish Lagodon rhomboides or the amphipod Ampithoe longimana until concentrations were 2.5—5 times natural levels. Dictyol B acetate deterred the urchin, amphipod, and pinfish at, or far below, natural concentrations. Dictyodial was too unstable to assay directly, but indirect experiments suggested that natural concentrations deterred the urchin, but not the pinfish or amphipod. Mild desiccation of D. ciliolata reduced concentrations of the different secondary metabolites by 7—38% and plants became 2.6—3.4 times more susceptible to urchin and amphipod grazing. The combined concentrations of pachydictyol A and dictyol B acetate found in undesiccated Dictyota ciliolata deterred feeding by urchins, but this deterrent effect was lost at concentrations found in the desiccated plants. Desiccated and undesiccated plants did not differ in nutritive value (as measured by protein and total N content) or toughness. Thus, desiccated plants became more palatable because chemical defenses were lost, not because nutritive value was increased. The stress of near—surface ultraviolet radiation also caused significant physiological changes in Dictyota ciliolata. UV—exposed blades bleached, senesced, and grew 84% less than blades protected from UV radiation. Tissue loss and minimal growth of UV—stressed plants constrained our sample sizes, but the limited assays that could be run suggested that UV stress may lower chemical defenses and increase plant susceptibility to herbivores. Because many previous investigations of herbivore feeding patterns used animals that had been starved for days before an assay, we tested the effects of this commonly used procedure on feeding discrimination. Recently fed urchins always avoided food containing natural concentrations of pachydictyol A during separate feeding trials performed on each of four consecutive days. In contrast, urchins deprived of food for 3 d before this assay did not avoid the treated food on days 1 and 2 of feeding trials, but did avoid it on days 3 and 4 after their hunger was reduced by feeding during days 1 and 2. If we had used only starved urchins (a common procedure in previous investigations), we could have concluded, with apparent justification, that urchins were unaffected by pachydictyol A (if the assays were run for only 1—2 d) or that they needed 2 d of exposure to the compound in order to learn to avoid it. Both of these conclusions would have been incorrect.
  • Item
    Chemical defenses, protein content, and susceptibility to herbivory of diploid vs. hapliod stages of the isomorphic brown alga Dictyota ciliolata (Phaeophyta).
    (Georgia Institute of Technology, 1996) Cronin, Greg ; Hay, Mark E.
    Seaweeds with free-living diploid and haploid stages might express recessive traits during haploid stages, or exhibit other differences, that would allow those stages to differ in fitness under different environmental conditions. Heteromorphic seaweeds are well known to have variable ecological traits associated with their morphological differences, but ecological differences among isomorphic stages have rarely been investigated. The chemically defended brown alga Diclyola ciliolala has a life history with isomorphic alternation of generations, allowing us to assess how chemical traits and susceptibility to herbivory differ among stages. Herbivorous amphipods and sea urchins consumed similar amounts of diploid sporophytes and haploid female and male gametophytes. Concomitant with similar palatability, the different life stages had similar concentrations of soluble protein and levels of chemical defenses. Thus, in addition to morphological similarities, the life stages of D. cilio/(/ta appear to share these ecological similarities.
  • Item
    Distribution, density, and sequestration of host chemical defenses by the specialist nudibranch Tritonia hamnerorum found at high densities on the sea fan Gorgonia ventalina
    (Georgia Institute of Technology, 1995-03-23) Cronin, Greg ; Hay, Mark E. ; Fenical, William ; Lindquist, Niels Lyle
    The dendronotid nudibranch Tritonia hamnerorum was observed on some reefs in the Florida Keys, USA, at very high densities during the summer of 1992. T. hamnerorum specializes on the sea fan Gorgonia ventalina and sequesters the furano-germacrene julieannafuran from its host; this compound effectively protects the nudibranch from consumption by the common predatory reef fish Thalassoma bifasciatum. T. hamnerorum densities were extremely high at some locations, with as many as 1700 nudibranchs found on a single G. ventalina colony. At high densities, nudibranch feeding killed large areas on some sea fan colonies by stripping all tissue from portions of the sea fan and allowing filamentous algae and other epibionts to colonize. The density of T. hamnerorum on G. ventalina varied greatly on scales of centimeters, meters and kilometers. High density patches of nudibranchs on individual sea fans were usually composed of equivalent-sized nudibranchs. These observations suggest that pelagic veligers have an incredible capability to find and settle synchronously on one portion of a sea fan or that the larvae or juveniles hatch from egg masses and develop without leaving the sea fan. This study adds to a growing number of marine examples suggesting that feeding specialization occurs primarily among small, sedentary consumers that deter or escape predators by associating with defended hosts.
  • Item
    Effects of storage and extraction procedures on yields of lipophilic metabolites from the brown seaweeds Dictyota ciliolata and D. menstrualis
    (Georgia Institute of Technology, 1995-03-23) Cronin, Greg ; Lindquist, Niels Lyle ; Hay, Mark E. ; Fenical, William
    Investigations focused on the ecological roles of marine secondary metabolites have become common, but marine ecologists have rarely assessed how methodologies used in sample preparation affect the extractability and stability of secondary metabolites and, thus, measurements of intraspecific and interspecific compound variance. We assessed various procedures for storing, drying, and extracting samples of 2 chemically defended brown seaweeds Dictyota ciliolata and D. menstrualis. These plants contain the diterpenoid alcohols pachydictyol A, dictyol B acetate, and dictyol E that are relatively stable under all test conditions. In contrast, the related diterpenoid dialdehyde, dictyodial, decomposed when plant tissues or crude extracts were stored at -25°C for 13 to 27 wk or when tissues or extracts were freeze-dried or subjected to high vacuum (<0.01 torr), methods that are commonly used in studies of marine chemical ecology. The stability of dictyodial was species-specific, degrading more in D. ciliolata than in D. menstrualis. During a few extractions, dictyodial reacted with methanol (MeOH) to yield an artifact resulting from the addition of 2 molecules of MeOH per molecule of dictyodial. A mixture of 2:1 dichloromethane (DCM) and MeOH tended to extract the lipophilic secondary metabolites better than MeOH or DCM alone. Metabolites were also afforded some protection against degradation when fresh tissue was submerged in 2:1 DCM:MeOH during storage at -25°C. Results of this investigation indicate that storage, extraction, and quantification methods need to be optimized for analyses of individual compounds and that even identical compounds can behave differently when they occur in different species.